Metamath Proof Explorer


Theorem dih1dimat

Description: Any 1-dimensional subspace is a value of isomorphism H. (Contributed by NM, 11-Apr-2014)

Ref Expression
Hypotheses dih1dimat.h 𝐻 = ( LHyp ‘ 𝐾 )
dih1dimat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dih1dimat.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dih1dimat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
Assertion dih1dimat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴 ) → 𝑃 ∈ ran 𝐼 )

Proof

Step Hyp Ref Expression
1 dih1dimat.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dih1dimat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 dih1dimat.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
4 dih1dimat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
5 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
6 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
7 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
8 eqid ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
9 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
10 eqid ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
11 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
12 eqid ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) )
13 eqid ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 )
14 eqid ( invr ‘ ( Scalar ‘ 𝑈 ) ) = ( invr ‘ ( Scalar ‘ 𝑈 ) )
15 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
16 eqid ( ·𝑠𝑈 ) = ( ·𝑠𝑈 )
17 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
18 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
19 eqid ( 0g𝑈 ) = ( 0g𝑈 )
20 eqid ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( ( ( invr ‘ ( Scalar ‘ 𝑈 ) ) ‘ 𝑠 ) ‘ 𝑓 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( ( ( invr ‘ ( Scalar ‘ 𝑈 ) ) ‘ 𝑠 ) ‘ 𝑓 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) )
21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 dih1dimatlem ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴 ) → 𝑃 ∈ ran 𝐼 )