Step |
Hyp |
Ref |
Expression |
1 |
|
dih1dimat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dih1dimat.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dih1dimat.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dih1dimat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
6 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
7 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
8 |
|
eqid |
⊢ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
eqid |
⊢ ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
|
eqid |
⊢ ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) |
13 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
14 |
|
eqid |
⊢ ( invr ‘ ( Scalar ‘ 𝑈 ) ) = ( invr ‘ ( Scalar ‘ 𝑈 ) ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
16 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
17 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
18 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
19 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
20 |
|
eqid |
⊢ ( ℩ ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ℎ ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( ( ( invr ‘ ( Scalar ‘ 𝑈 ) ) ‘ 𝑠 ) ‘ 𝑓 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( ℩ ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ℎ ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( ( ( invr ‘ ( Scalar ‘ 𝑈 ) ) ‘ 𝑠 ) ‘ 𝑓 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
dih1dimatlem |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ ran 𝐼 ) |