Metamath Proof Explorer


Theorem dih1dimatlem

Description: Lemma for dih1dimat . (Contributed by NM, 10-Apr-2014)

Ref Expression
Hypotheses dih1dimat.h 𝐻 = ( LHyp ‘ 𝐾 )
dih1dimat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dih1dimat.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dih1dimat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
dih1dimat.b 𝐵 = ( Base ‘ 𝐾 )
dih1dimat.l = ( le ‘ 𝐾 )
dih1dimat.c 𝐶 = ( Atoms ‘ 𝐾 )
dih1dimat.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
dih1dimat.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dih1dimat.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
dih1dimat.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dih1dimat.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
dih1dimat.d 𝐹 = ( Scalar ‘ 𝑈 )
dih1dimat.j 𝐽 = ( invr𝐹 )
dih1dimat.v 𝑉 = ( Base ‘ 𝑈 )
dih1dimat.m · = ( ·𝑠𝑈 )
dih1dimat.s 𝑆 = ( LSubSp ‘ 𝑈 )
dih1dimat.n 𝑁 = ( LSpan ‘ 𝑈 )
dih1dimat.z 0 = ( 0g𝑈 )
dih1dimat.g 𝐺 = ( 𝑇 ( 𝑃 ) = ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) )
Assertion dih1dimatlem ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐷𝐴 ) → 𝐷 ∈ ran 𝐼 )

Proof

Step Hyp Ref Expression
1 dih1dimat.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dih1dimat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 dih1dimat.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
4 dih1dimat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
5 dih1dimat.b 𝐵 = ( Base ‘ 𝐾 )
6 dih1dimat.l = ( le ‘ 𝐾 )
7 dih1dimat.c 𝐶 = ( Atoms ‘ 𝐾 )
8 dih1dimat.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
9 dih1dimat.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
10 dih1dimat.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
11 dih1dimat.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
12 dih1dimat.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
13 dih1dimat.d 𝐹 = ( Scalar ‘ 𝑈 )
14 dih1dimat.j 𝐽 = ( invr𝐹 )
15 dih1dimat.v 𝑉 = ( Base ‘ 𝑈 )
16 dih1dimat.m · = ( ·𝑠𝑈 )
17 dih1dimat.s 𝑆 = ( LSubSp ‘ 𝑈 )
18 dih1dimat.n 𝑁 = ( LSpan ‘ 𝑈 )
19 dih1dimat.z 0 = ( 0g𝑈 )
20 dih1dimat.g 𝐺 = ( 𝑇 ( 𝑃 ) = ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) )
21 id ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
22 1 2 21 dvhlvec ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑈 ∈ LVec )
23 15 18 19 4 islsat ( 𝑈 ∈ LVec → ( 𝐷𝐴 ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) 𝐷 = ( 𝑁 ‘ { 𝑣 } ) ) )
24 22 23 syl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝐷𝐴 ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) 𝐷 = ( 𝑁 ‘ { 𝑣 } ) ) )
25 24 biimpa ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐷𝐴 ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) 𝐷 = ( 𝑁 ‘ { 𝑣 } ) )
26 eldifi ( 𝑣 ∈ ( 𝑉 ∖ { 0 } ) → 𝑣𝑉 )
27 1 9 11 2 15 dvhvbase ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑉 = ( 𝑇 × 𝐸 ) )
28 27 eleq2d ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑣𝑉𝑣 ∈ ( 𝑇 × 𝐸 ) ) )
29 26 28 syl5ib ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑣 ∈ ( 𝑉 ∖ { 0 } ) → 𝑣 ∈ ( 𝑇 × 𝐸 ) ) )
30 29 imp ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑣 ∈ ( 𝑇 × 𝐸 ) )
31 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠 = 𝑂 ) → 𝑠 = 𝑂 )
32 31 opeq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠 = 𝑂 ) → ⟨ 𝑓 , 𝑠 ⟩ = ⟨ 𝑓 , 𝑂 ⟩ )
33 32 sneqd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠 = 𝑂 ) → { ⟨ 𝑓 , 𝑠 ⟩ } = { ⟨ 𝑓 , 𝑂 ⟩ } )
34 33 fveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠 = 𝑂 ) → ( 𝑁 ‘ { ⟨ 𝑓 , 𝑠 ⟩ } ) = ( 𝑁 ‘ { ⟨ 𝑓 , 𝑂 ⟩ } ) )
35 simpl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
36 5 1 9 10 trlcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓𝑇 ) → ( 𝑅𝑓 ) ∈ 𝐵 )
37 6 1 9 10 trlle ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓𝑇 ) → ( 𝑅𝑓 ) 𝑊 )
38 eqid ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
39 5 6 1 3 38 dihvalb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝑓 ) ∈ 𝐵 ∧ ( 𝑅𝑓 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑅𝑓 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑅𝑓 ) ) )
40 35 36 37 39 syl12anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓𝑇 ) → ( 𝐼 ‘ ( 𝑅𝑓 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑅𝑓 ) ) )
41 5 1 9 10 12 2 38 18 dib1dim2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓𝑇 ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑅𝑓 ) ) = ( 𝑁 ‘ { ⟨ 𝑓 , 𝑂 ⟩ } ) )
42 40 41 eqtr2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓𝑇 ) → ( 𝑁 ‘ { ⟨ 𝑓 , 𝑂 ⟩ } ) = ( 𝐼 ‘ ( 𝑅𝑓 ) ) )
43 5 1 3 2 17 dihf11 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐼 : 𝐵1-1𝑆 )
44 43 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓𝑇 ) → 𝐼 : 𝐵1-1𝑆 )
45 f1fn ( 𝐼 : 𝐵1-1𝑆𝐼 Fn 𝐵 )
46 44 45 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓𝑇 ) → 𝐼 Fn 𝐵 )
47 fnfvelrn ( ( 𝐼 Fn 𝐵 ∧ ( 𝑅𝑓 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝑅𝑓 ) ) ∈ ran 𝐼 )
48 46 36 47 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓𝑇 ) → ( 𝐼 ‘ ( 𝑅𝑓 ) ) ∈ ran 𝐼 )
49 42 48 eqeltrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓𝑇 ) → ( 𝑁 ‘ { ⟨ 𝑓 , 𝑂 ⟩ } ) ∈ ran 𝐼 )
50 49 adantrr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) → ( 𝑁 ‘ { ⟨ 𝑓 , 𝑂 ⟩ } ) ∈ ran 𝐼 )
51 50 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠 = 𝑂 ) → ( 𝑁 ‘ { ⟨ 𝑓 , 𝑂 ⟩ } ) ∈ ran 𝐼 )
52 34 51 eqeltrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠 = 𝑂 ) → ( 𝑁 ‘ { ⟨ 𝑓 , 𝑠 ⟩ } ) ∈ ran 𝐼 )
53 simpll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
54 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
55 1 11 2 13 54 dvhbase ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( Base ‘ 𝐹 ) = 𝐸 )
56 53 55 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( Base ‘ 𝐹 ) = 𝐸 )
57 56 rexeqdv ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( ∃ 𝑡 ∈ ( Base ‘ 𝐹 ) 𝑢 = ( 𝑡 ·𝑓 , 𝑠 ⟩ ) ↔ ∃ 𝑡𝐸 𝑢 = ( 𝑡 ·𝑓 , 𝑠 ⟩ ) ) )
58 simplll ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) ∧ 𝑡𝐸 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
59 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) ∧ 𝑡𝐸 ) → 𝑡𝐸 )
60 opelxpi ( ( 𝑓𝑇𝑠𝐸 ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝑇 × 𝐸 ) )
61 60 ad3antlr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) ∧ 𝑡𝐸 ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝑇 × 𝐸 ) )
62 1 9 11 2 16 dvhvscacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑡𝐸 ∧ ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑡 ·𝑓 , 𝑠 ⟩ ) ∈ ( 𝑇 × 𝐸 ) )
63 58 59 61 62 syl12anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) ∧ 𝑡𝐸 ) → ( 𝑡 ·𝑓 , 𝑠 ⟩ ) ∈ ( 𝑇 × 𝐸 ) )
64 eleq1a ( ( 𝑡 ·𝑓 , 𝑠 ⟩ ) ∈ ( 𝑇 × 𝐸 ) → ( 𝑢 = ( 𝑡 ·𝑓 , 𝑠 ⟩ ) → 𝑢 ∈ ( 𝑇 × 𝐸 ) ) )
65 63 64 syl ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) ∧ 𝑡𝐸 ) → ( 𝑢 = ( 𝑡 ·𝑓 , 𝑠 ⟩ ) → 𝑢 ∈ ( 𝑇 × 𝐸 ) ) )
66 65 rexlimdva ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( ∃ 𝑡𝐸 𝑢 = ( 𝑡 ·𝑓 , 𝑠 ⟩ ) → 𝑢 ∈ ( 𝑇 × 𝐸 ) ) )
67 66 pm4.71rd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( ∃ 𝑡𝐸 𝑢 = ( 𝑡 ·𝑓 , 𝑠 ⟩ ) ↔ ( 𝑢 ∈ ( 𝑇 × 𝐸 ) ∧ ∃ 𝑡𝐸 𝑢 = ( 𝑡 ·𝑓 , 𝑠 ⟩ ) ) ) )
68 simplrl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → 𝑓𝑇 )
69 68 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) ∧ 𝑡𝐸 ) → 𝑓𝑇 )
70 simplrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → 𝑠𝐸 )
71 70 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) ∧ 𝑡𝐸 ) → 𝑠𝐸 )
72 1 9 11 2 16 dvhopvsca ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑡𝐸𝑓𝑇𝑠𝐸 ) ) → ( 𝑡 ·𝑓 , 𝑠 ⟩ ) = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ )
73 58 59 69 71 72 syl13anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) ∧ 𝑡𝐸 ) → ( 𝑡 ·𝑓 , 𝑠 ⟩ ) = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ )
74 73 eqeq2d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) ∧ 𝑡𝐸 ) → ( 𝑢 = ( 𝑡 ·𝑓 , 𝑠 ⟩ ) ↔ 𝑢 = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ ) )
75 74 rexbidva ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( ∃ 𝑡𝐸 𝑢 = ( 𝑡 ·𝑓 , 𝑠 ⟩ ) ↔ ∃ 𝑡𝐸 𝑢 = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ ) )
76 75 anbi2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( ( 𝑢 ∈ ( 𝑇 × 𝐸 ) ∧ ∃ 𝑡𝐸 𝑢 = ( 𝑡 ·𝑓 , 𝑠 ⟩ ) ) ↔ ( 𝑢 ∈ ( 𝑇 × 𝐸 ) ∧ ∃ 𝑡𝐸 𝑢 = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ ) ) )
77 57 67 76 3bitrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( ∃ 𝑡 ∈ ( Base ‘ 𝐹 ) 𝑢 = ( 𝑡 ·𝑓 , 𝑠 ⟩ ) ↔ ( 𝑢 ∈ ( 𝑇 × 𝐸 ) ∧ ∃ 𝑡𝐸 𝑢 = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ ) ) )
78 77 abbidv ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → { 𝑢 ∣ ∃ 𝑡 ∈ ( Base ‘ 𝐹 ) 𝑢 = ( 𝑡 ·𝑓 , 𝑠 ⟩ ) } = { 𝑢 ∣ ( 𝑢 ∈ ( 𝑇 × 𝐸 ) ∧ ∃ 𝑡𝐸 𝑢 = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ ) } )
79 df-rab { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡𝐸 𝑢 = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ } = { 𝑢 ∣ ( 𝑢 ∈ ( 𝑇 × 𝐸 ) ∧ ∃ 𝑡𝐸 𝑢 = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ ) }
80 78 79 eqtr4di ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → { 𝑢 ∣ ∃ 𝑡 ∈ ( Base ‘ 𝐹 ) 𝑢 = ( 𝑡 ·𝑓 , 𝑠 ⟩ ) } = { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡𝐸 𝑢 = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ } )
81 ssrab2 { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡𝐸 𝑢 = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ } ⊆ ( 𝑇 × 𝐸 )
82 relxp Rel ( 𝑇 × 𝐸 )
83 relss ( { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡𝐸 𝑢 = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ } ⊆ ( 𝑇 × 𝐸 ) → ( Rel ( 𝑇 × 𝐸 ) → Rel { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡𝐸 𝑢 = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ } ) )
84 81 82 83 mp2 Rel { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡𝐸 𝑢 = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ }
85 relopabv Rel { ⟨ 𝑔 , 𝑟 ⟩ ∣ ( 𝑔 = ( 𝑟𝐺 ) ∧ 𝑟𝐸 ) }
86 vex 𝑖 ∈ V
87 vex 𝑝 ∈ V
88 eqeq1 ( 𝑔 = 𝑖 → ( 𝑔 = ( 𝑟𝐺 ) ↔ 𝑖 = ( 𝑟𝐺 ) ) )
89 88 anbi1d ( 𝑔 = 𝑖 → ( ( 𝑔 = ( 𝑟𝐺 ) ∧ 𝑟𝐸 ) ↔ ( 𝑖 = ( 𝑟𝐺 ) ∧ 𝑟𝐸 ) ) )
90 fveq1 ( 𝑟 = 𝑝 → ( 𝑟𝐺 ) = ( 𝑝𝐺 ) )
91 90 eqeq2d ( 𝑟 = 𝑝 → ( 𝑖 = ( 𝑟𝐺 ) ↔ 𝑖 = ( 𝑝𝐺 ) ) )
92 eleq1w ( 𝑟 = 𝑝 → ( 𝑟𝐸𝑝𝐸 ) )
93 91 92 anbi12d ( 𝑟 = 𝑝 → ( ( 𝑖 = ( 𝑟𝐺 ) ∧ 𝑟𝐸 ) ↔ ( 𝑖 = ( 𝑝𝐺 ) ∧ 𝑝𝐸 ) ) )
94 86 87 89 93 opelopab ( ⟨ 𝑖 , 𝑝 ⟩ ∈ { ⟨ 𝑔 , 𝑟 ⟩ ∣ ( 𝑔 = ( 𝑟𝐺 ) ∧ 𝑟𝐸 ) } ↔ ( 𝑖 = ( 𝑝𝐺 ) ∧ 𝑝𝐸 ) )
95 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 dih1dimatlem0 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ∧ 𝑠𝑂 ) → ( ( 𝑖 = ( 𝑝𝐺 ) ∧ 𝑝𝐸 ) ↔ ( ( 𝑖𝑇𝑝𝐸 ) ∧ ∃ 𝑡𝐸 ( 𝑖 = ( 𝑡𝑓 ) ∧ 𝑝 = ( 𝑡𝑠 ) ) ) ) )
96 95 3expa ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( ( 𝑖 = ( 𝑝𝐺 ) ∧ 𝑝𝐸 ) ↔ ( ( 𝑖𝑇𝑝𝐸 ) ∧ ∃ 𝑡𝐸 ( 𝑖 = ( 𝑡𝑓 ) ∧ 𝑝 = ( 𝑡𝑠 ) ) ) ) )
97 opelxp ( ⟨ 𝑖 , 𝑝 ⟩ ∈ ( 𝑇 × 𝐸 ) ↔ ( 𝑖𝑇𝑝𝐸 ) )
98 86 87 opth ( ⟨ 𝑖 , 𝑝 ⟩ = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ ↔ ( 𝑖 = ( 𝑡𝑓 ) ∧ 𝑝 = ( 𝑡𝑠 ) ) )
99 98 rexbii ( ∃ 𝑡𝐸𝑖 , 𝑝 ⟩ = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ ↔ ∃ 𝑡𝐸 ( 𝑖 = ( 𝑡𝑓 ) ∧ 𝑝 = ( 𝑡𝑠 ) ) )
100 97 99 anbi12i ( ( ⟨ 𝑖 , 𝑝 ⟩ ∈ ( 𝑇 × 𝐸 ) ∧ ∃ 𝑡𝐸𝑖 , 𝑝 ⟩ = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ ) ↔ ( ( 𝑖𝑇𝑝𝐸 ) ∧ ∃ 𝑡𝐸 ( 𝑖 = ( 𝑡𝑓 ) ∧ 𝑝 = ( 𝑡𝑠 ) ) ) )
101 96 100 bitr4di ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( ( 𝑖 = ( 𝑝𝐺 ) ∧ 𝑝𝐸 ) ↔ ( ⟨ 𝑖 , 𝑝 ⟩ ∈ ( 𝑇 × 𝐸 ) ∧ ∃ 𝑡𝐸𝑖 , 𝑝 ⟩ = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ ) ) )
102 eqeq1 ( 𝑢 = ⟨ 𝑖 , 𝑝 ⟩ → ( 𝑢 = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ ↔ ⟨ 𝑖 , 𝑝 ⟩ = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ ) )
103 102 rexbidv ( 𝑢 = ⟨ 𝑖 , 𝑝 ⟩ → ( ∃ 𝑡𝐸 𝑢 = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ ↔ ∃ 𝑡𝐸𝑖 , 𝑝 ⟩ = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ ) )
104 103 elrab ( ⟨ 𝑖 , 𝑝 ⟩ ∈ { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡𝐸 𝑢 = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ } ↔ ( ⟨ 𝑖 , 𝑝 ⟩ ∈ ( 𝑇 × 𝐸 ) ∧ ∃ 𝑡𝐸𝑖 , 𝑝 ⟩ = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ ) )
105 101 104 bitr4di ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( ( 𝑖 = ( 𝑝𝐺 ) ∧ 𝑝𝐸 ) ↔ ⟨ 𝑖 , 𝑝 ⟩ ∈ { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡𝐸 𝑢 = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ } ) )
106 94 105 bitr2id ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( ⟨ 𝑖 , 𝑝 ⟩ ∈ { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡𝐸 𝑢 = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ } ↔ ⟨ 𝑖 , 𝑝 ⟩ ∈ { ⟨ 𝑔 , 𝑟 ⟩ ∣ ( 𝑔 = ( 𝑟𝐺 ) ∧ 𝑟𝐸 ) } ) )
107 84 85 106 eqrelrdv ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡𝐸 𝑢 = ⟨ ( 𝑡𝑓 ) , ( 𝑡𝑠 ) ⟩ } = { ⟨ 𝑔 , 𝑟 ⟩ ∣ ( 𝑔 = ( 𝑟𝐺 ) ∧ 𝑟𝐸 ) } )
108 80 107 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → { 𝑢 ∣ ∃ 𝑡 ∈ ( Base ‘ 𝐹 ) 𝑢 = ( 𝑡 ·𝑓 , 𝑠 ⟩ ) } = { ⟨ 𝑔 , 𝑟 ⟩ ∣ ( 𝑔 = ( 𝑟𝐺 ) ∧ 𝑟𝐸 ) } )
109 1 2 53 dvhlmod ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → 𝑈 ∈ LMod )
110 1 9 11 2 15 dvhelvbasei ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ 𝑉 )
111 110 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ 𝑉 )
112 13 54 15 16 18 lspsn ( ( 𝑈 ∈ LMod ∧ ⟨ 𝑓 , 𝑠 ⟩ ∈ 𝑉 ) → ( 𝑁 ‘ { ⟨ 𝑓 , 𝑠 ⟩ } ) = { 𝑢 ∣ ∃ 𝑡 ∈ ( Base ‘ 𝐹 ) 𝑢 = ( 𝑡 ·𝑓 , 𝑠 ⟩ ) } )
113 109 111 112 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( 𝑁 ‘ { ⟨ 𝑓 , 𝑠 ⟩ } ) = { 𝑢 ∣ ∃ 𝑡 ∈ ( Base ‘ 𝐹 ) 𝑢 = ( 𝑡 ·𝑓 , 𝑠 ⟩ ) } )
114 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → 𝑠𝑂 )
115 5 1 9 11 12 2 13 14 tendoinvcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑠𝐸𝑠𝑂 ) → ( ( 𝐽𝑠 ) ∈ 𝐸 ∧ ( 𝐽𝑠 ) ≠ 𝑂 ) )
116 115 simpld ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑠𝐸𝑠𝑂 ) → ( 𝐽𝑠 ) ∈ 𝐸 )
117 53 70 114 116 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( 𝐽𝑠 ) ∈ 𝐸 )
118 1 9 11 tendocl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐽𝑠 ) ∈ 𝐸𝑓𝑇 ) → ( ( 𝐽𝑠 ) ‘ 𝑓 ) ∈ 𝑇 )
119 53 117 68 118 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( ( 𝐽𝑠 ) ‘ 𝑓 ) ∈ 𝑇 )
120 6 7 1 8 lhpocnel2 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑃𝐶 ∧ ¬ 𝑃 𝑊 ) )
121 53 120 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( 𝑃𝐶 ∧ ¬ 𝑃 𝑊 ) )
122 6 7 1 9 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐽𝑠 ) ‘ 𝑓 ) ∈ 𝑇 ∧ ( 𝑃𝐶 ∧ ¬ 𝑃 𝑊 ) ) → ( ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ∈ 𝐶 ∧ ¬ ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) 𝑊 ) )
123 53 119 121 122 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ∈ 𝐶 ∧ ¬ ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) 𝑊 ) )
124 eqid ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
125 6 7 1 124 3 dihvalcqat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ∈ 𝐶 ∧ ¬ ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) 𝑊 ) ) → ( 𝐼 ‘ ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) = ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) )
126 53 123 125 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( 𝐼 ‘ ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) = ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) )
127 6 7 1 8 9 11 124 20 dicval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ∈ 𝐶 ∧ ¬ ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) 𝑊 ) ) → ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) = { ⟨ 𝑔 , 𝑟 ⟩ ∣ ( 𝑔 = ( 𝑟𝐺 ) ∧ 𝑟𝐸 ) } )
128 53 123 127 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) = { ⟨ 𝑔 , 𝑟 ⟩ ∣ ( 𝑔 = ( 𝑟𝐺 ) ∧ 𝑟𝐸 ) } )
129 126 128 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( 𝐼 ‘ ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) = { ⟨ 𝑔 , 𝑟 ⟩ ∣ ( 𝑔 = ( 𝑟𝐺 ) ∧ 𝑟𝐸 ) } )
130 108 113 129 3eqtr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( 𝑁 ‘ { ⟨ 𝑓 , 𝑠 ⟩ } ) = ( 𝐼 ‘ ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) )
131 5 1 3 dihfn ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐼 Fn 𝐵 )
132 131 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) → 𝐼 Fn 𝐵 )
133 132 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → 𝐼 Fn 𝐵 )
134 simplll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → 𝐾 ∈ HL )
135 hlop ( 𝐾 ∈ HL → 𝐾 ∈ OP )
136 134 135 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → 𝐾 ∈ OP )
137 5 1 lhpbase ( 𝑊𝐻𝑊𝐵 )
138 137 ad3antlr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → 𝑊𝐵 )
139 eqid ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 )
140 5 139 opoccl ( ( 𝐾 ∈ OP ∧ 𝑊𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐵 )
141 136 138 140 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐵 )
142 8 141 eqeltrid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → 𝑃𝐵 )
143 5 1 9 ltrncl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐽𝑠 ) ‘ 𝑓 ) ∈ 𝑇𝑃𝐵 ) → ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ∈ 𝐵 )
144 53 119 142 143 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ∈ 𝐵 )
145 fnfvelrn ( ( 𝐼 Fn 𝐵 ∧ ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) ∈ ran 𝐼 )
146 133 144 145 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( 𝐼 ‘ ( ( ( 𝐽𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) ∈ ran 𝐼 )
147 130 146 eqeltrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) ∧ 𝑠𝑂 ) → ( 𝑁 ‘ { ⟨ 𝑓 , 𝑠 ⟩ } ) ∈ ran 𝐼 )
148 52 147 pm2.61dane ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓𝑇𝑠𝐸 ) ) → ( 𝑁 ‘ { ⟨ 𝑓 , 𝑠 ⟩ } ) ∈ ran 𝐼 )
149 148 ralrimivva ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ∀ 𝑓𝑇𝑠𝐸 ( 𝑁 ‘ { ⟨ 𝑓 , 𝑠 ⟩ } ) ∈ ran 𝐼 )
150 sneq ( 𝑣 = ⟨ 𝑓 , 𝑠 ⟩ → { 𝑣 } = { ⟨ 𝑓 , 𝑠 ⟩ } )
151 150 fveq2d ( 𝑣 = ⟨ 𝑓 , 𝑠 ⟩ → ( 𝑁 ‘ { 𝑣 } ) = ( 𝑁 ‘ { ⟨ 𝑓 , 𝑠 ⟩ } ) )
152 151 eleq1d ( 𝑣 = ⟨ 𝑓 , 𝑠 ⟩ → ( ( 𝑁 ‘ { 𝑣 } ) ∈ ran 𝐼 ↔ ( 𝑁 ‘ { ⟨ 𝑓 , 𝑠 ⟩ } ) ∈ ran 𝐼 ) )
153 152 ralxp ( ∀ 𝑣 ∈ ( 𝑇 × 𝐸 ) ( 𝑁 ‘ { 𝑣 } ) ∈ ran 𝐼 ↔ ∀ 𝑓𝑇𝑠𝐸 ( 𝑁 ‘ { ⟨ 𝑓 , 𝑠 ⟩ } ) ∈ ran 𝐼 )
154 149 153 sylibr ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ∀ 𝑣 ∈ ( 𝑇 × 𝐸 ) ( 𝑁 ‘ { 𝑣 } ) ∈ ran 𝐼 )
155 154 r19.21bi ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑣 ∈ ( 𝑇 × 𝐸 ) ) → ( 𝑁 ‘ { 𝑣 } ) ∈ ran 𝐼 )
156 30 155 syldan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑁 ‘ { 𝑣 } ) ∈ ran 𝐼 )
157 eleq1a ( ( 𝑁 ‘ { 𝑣 } ) ∈ ran 𝐼 → ( 𝐷 = ( 𝑁 ‘ { 𝑣 } ) → 𝐷 ∈ ran 𝐼 ) )
158 156 157 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐷 = ( 𝑁 ‘ { 𝑣 } ) → 𝐷 ∈ ran 𝐼 ) )
159 158 rexlimdva ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) 𝐷 = ( 𝑁 ‘ { 𝑣 } ) → 𝐷 ∈ ran 𝐼 ) )
160 159 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐷𝐴 ) → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) 𝐷 = ( 𝑁 ‘ { 𝑣 } ) → 𝐷 ∈ ran 𝐼 ) )
161 25 160 mpd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐷𝐴 ) → 𝐷 ∈ ran 𝐼 )