Step |
Hyp |
Ref |
Expression |
1 |
|
dih1dimat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dih1dimat.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dih1dimat.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dih1dimat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
5 |
|
dih1dimat.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
6 |
|
dih1dimat.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
7 |
|
dih1dimat.c |
⊢ 𝐶 = ( Atoms ‘ 𝐾 ) |
8 |
|
dih1dimat.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
dih1dimat.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
dih1dimat.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
dih1dimat.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
|
dih1dimat.o |
⊢ 𝑂 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
13 |
|
dih1dimat.d |
⊢ 𝐹 = ( Scalar ‘ 𝑈 ) |
14 |
|
dih1dimat.j |
⊢ 𝐽 = ( invr ‘ 𝐹 ) |
15 |
|
dih1dimat.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
16 |
|
dih1dimat.m |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
17 |
|
dih1dimat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
18 |
|
dih1dimat.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
19 |
|
dih1dimat.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
20 |
|
dih1dimat.g |
⊢ 𝐺 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) |
21 |
|
id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
22 |
1 2 21
|
dvhlvec |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑈 ∈ LVec ) |
23 |
15 18 19 4
|
islsat |
⊢ ( 𝑈 ∈ LVec → ( 𝐷 ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) 𝐷 = ( 𝑁 ‘ { 𝑣 } ) ) ) |
24 |
22 23
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐷 ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) 𝐷 = ( 𝑁 ‘ { 𝑣 } ) ) ) |
25 |
24
|
biimpa |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐷 ∈ 𝐴 ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) 𝐷 = ( 𝑁 ‘ { 𝑣 } ) ) |
26 |
|
eldifi |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 0 } ) → 𝑣 ∈ 𝑉 ) |
27 |
1 9 11 2 15
|
dvhvbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑉 = ( 𝑇 × 𝐸 ) ) |
28 |
27
|
eleq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑣 ∈ 𝑉 ↔ 𝑣 ∈ ( 𝑇 × 𝐸 ) ) ) |
29 |
26 28
|
syl5ib |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑣 ∈ ( 𝑉 ∖ { 0 } ) → 𝑣 ∈ ( 𝑇 × 𝐸 ) ) ) |
30 |
29
|
imp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑣 ∈ ( 𝑇 × 𝐸 ) ) |
31 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 = 𝑂 ) → 𝑠 = 𝑂 ) |
32 |
31
|
opeq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 = 𝑂 ) → 〈 𝑓 , 𝑠 〉 = 〈 𝑓 , 𝑂 〉 ) |
33 |
32
|
sneqd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 = 𝑂 ) → { 〈 𝑓 , 𝑠 〉 } = { 〈 𝑓 , 𝑂 〉 } ) |
34 |
33
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 = 𝑂 ) → ( 𝑁 ‘ { 〈 𝑓 , 𝑠 〉 } ) = ( 𝑁 ‘ { 〈 𝑓 , 𝑂 〉 } ) ) |
35 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
36 |
5 1 9 10
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝑅 ‘ 𝑓 ) ∈ 𝐵 ) |
37 |
6 1 9 10
|
trlle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) |
38 |
|
eqid |
⊢ ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
39 |
5 6 1 3 38
|
dihvalb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑅 ‘ 𝑓 ) ∈ 𝐵 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝑓 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑅 ‘ 𝑓 ) ) ) |
40 |
35 36 37 39
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝑓 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑅 ‘ 𝑓 ) ) ) |
41 |
5 1 9 10 12 2 38 18
|
dib1dim2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑅 ‘ 𝑓 ) ) = ( 𝑁 ‘ { 〈 𝑓 , 𝑂 〉 } ) ) |
42 |
40 41
|
eqtr2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝑁 ‘ { 〈 𝑓 , 𝑂 〉 } ) = ( 𝐼 ‘ ( 𝑅 ‘ 𝑓 ) ) ) |
43 |
5 1 3 2 17
|
dihf11 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 : 𝐵 –1-1→ 𝑆 ) |
44 |
43
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → 𝐼 : 𝐵 –1-1→ 𝑆 ) |
45 |
|
f1fn |
⊢ ( 𝐼 : 𝐵 –1-1→ 𝑆 → 𝐼 Fn 𝐵 ) |
46 |
44 45
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → 𝐼 Fn 𝐵 ) |
47 |
|
fnfvelrn |
⊢ ( ( 𝐼 Fn 𝐵 ∧ ( 𝑅 ‘ 𝑓 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝑓 ) ) ∈ ran 𝐼 ) |
48 |
46 36 47
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝑓 ) ) ∈ ran 𝐼 ) |
49 |
42 48
|
eqeltrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝑁 ‘ { 〈 𝑓 , 𝑂 〉 } ) ∈ ran 𝐼 ) |
50 |
49
|
adantrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) → ( 𝑁 ‘ { 〈 𝑓 , 𝑂 〉 } ) ∈ ran 𝐼 ) |
51 |
50
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 = 𝑂 ) → ( 𝑁 ‘ { 〈 𝑓 , 𝑂 〉 } ) ∈ ran 𝐼 ) |
52 |
34 51
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 = 𝑂 ) → ( 𝑁 ‘ { 〈 𝑓 , 𝑠 〉 } ) ∈ ran 𝐼 ) |
53 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
54 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
55 |
1 11 2 13 54
|
dvhbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝐹 ) = 𝐸 ) |
56 |
53 55
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( Base ‘ 𝐹 ) = 𝐸 ) |
57 |
56
|
rexeqdv |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( ∃ 𝑡 ∈ ( Base ‘ 𝐹 ) 𝑢 = ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) ↔ ∃ 𝑡 ∈ 𝐸 𝑢 = ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) ) ) |
58 |
|
simplll |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) ∧ 𝑡 ∈ 𝐸 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
59 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) ∧ 𝑡 ∈ 𝐸 ) → 𝑡 ∈ 𝐸 ) |
60 |
|
opelxpi |
⊢ ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) → 〈 𝑓 , 𝑠 〉 ∈ ( 𝑇 × 𝐸 ) ) |
61 |
60
|
ad3antlr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) ∧ 𝑡 ∈ 𝐸 ) → 〈 𝑓 , 𝑠 〉 ∈ ( 𝑇 × 𝐸 ) ) |
62 |
1 9 11 2 16
|
dvhvscacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 〈 𝑓 , 𝑠 〉 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) ∈ ( 𝑇 × 𝐸 ) ) |
63 |
58 59 61 62
|
syl12anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) ∧ 𝑡 ∈ 𝐸 ) → ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) ∈ ( 𝑇 × 𝐸 ) ) |
64 |
|
eleq1a |
⊢ ( ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) ∈ ( 𝑇 × 𝐸 ) → ( 𝑢 = ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) → 𝑢 ∈ ( 𝑇 × 𝐸 ) ) ) |
65 |
63 64
|
syl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) ∧ 𝑡 ∈ 𝐸 ) → ( 𝑢 = ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) → 𝑢 ∈ ( 𝑇 × 𝐸 ) ) ) |
66 |
65
|
rexlimdva |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( ∃ 𝑡 ∈ 𝐸 𝑢 = ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) → 𝑢 ∈ ( 𝑇 × 𝐸 ) ) ) |
67 |
66
|
pm4.71rd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( ∃ 𝑡 ∈ 𝐸 𝑢 = ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) ↔ ( 𝑢 ∈ ( 𝑇 × 𝐸 ) ∧ ∃ 𝑡 ∈ 𝐸 𝑢 = ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) ) ) ) |
68 |
|
simplrl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → 𝑓 ∈ 𝑇 ) |
69 |
68
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) ∧ 𝑡 ∈ 𝐸 ) → 𝑓 ∈ 𝑇 ) |
70 |
|
simplrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → 𝑠 ∈ 𝐸 ) |
71 |
70
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) ∧ 𝑡 ∈ 𝐸 ) → 𝑠 ∈ 𝐸 ) |
72 |
1 9 11 2 16
|
dvhopvsca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) → ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 ) |
73 |
58 59 69 71 72
|
syl13anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) ∧ 𝑡 ∈ 𝐸 ) → ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 ) |
74 |
73
|
eqeq2d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) ∧ 𝑡 ∈ 𝐸 ) → ( 𝑢 = ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) ↔ 𝑢 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 ) ) |
75 |
74
|
rexbidva |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( ∃ 𝑡 ∈ 𝐸 𝑢 = ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) ↔ ∃ 𝑡 ∈ 𝐸 𝑢 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 ) ) |
76 |
75
|
anbi2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( ( 𝑢 ∈ ( 𝑇 × 𝐸 ) ∧ ∃ 𝑡 ∈ 𝐸 𝑢 = ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) ) ↔ ( 𝑢 ∈ ( 𝑇 × 𝐸 ) ∧ ∃ 𝑡 ∈ 𝐸 𝑢 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 ) ) ) |
77 |
57 67 76
|
3bitrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( ∃ 𝑡 ∈ ( Base ‘ 𝐹 ) 𝑢 = ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) ↔ ( 𝑢 ∈ ( 𝑇 × 𝐸 ) ∧ ∃ 𝑡 ∈ 𝐸 𝑢 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 ) ) ) |
78 |
77
|
abbidv |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → { 𝑢 ∣ ∃ 𝑡 ∈ ( Base ‘ 𝐹 ) 𝑢 = ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) } = { 𝑢 ∣ ( 𝑢 ∈ ( 𝑇 × 𝐸 ) ∧ ∃ 𝑡 ∈ 𝐸 𝑢 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 ) } ) |
79 |
|
df-rab |
⊢ { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡 ∈ 𝐸 𝑢 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 } = { 𝑢 ∣ ( 𝑢 ∈ ( 𝑇 × 𝐸 ) ∧ ∃ 𝑡 ∈ 𝐸 𝑢 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 ) } |
80 |
78 79
|
eqtr4di |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → { 𝑢 ∣ ∃ 𝑡 ∈ ( Base ‘ 𝐹 ) 𝑢 = ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) } = { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡 ∈ 𝐸 𝑢 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 } ) |
81 |
|
ssrab2 |
⊢ { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡 ∈ 𝐸 𝑢 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 } ⊆ ( 𝑇 × 𝐸 ) |
82 |
|
relxp |
⊢ Rel ( 𝑇 × 𝐸 ) |
83 |
|
relss |
⊢ ( { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡 ∈ 𝐸 𝑢 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 } ⊆ ( 𝑇 × 𝐸 ) → ( Rel ( 𝑇 × 𝐸 ) → Rel { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡 ∈ 𝐸 𝑢 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 } ) ) |
84 |
81 82 83
|
mp2 |
⊢ Rel { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡 ∈ 𝐸 𝑢 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 } |
85 |
|
relopabv |
⊢ Rel { 〈 𝑔 , 𝑟 〉 ∣ ( 𝑔 = ( 𝑟 ‘ 𝐺 ) ∧ 𝑟 ∈ 𝐸 ) } |
86 |
|
vex |
⊢ 𝑖 ∈ V |
87 |
|
vex |
⊢ 𝑝 ∈ V |
88 |
|
eqeq1 |
⊢ ( 𝑔 = 𝑖 → ( 𝑔 = ( 𝑟 ‘ 𝐺 ) ↔ 𝑖 = ( 𝑟 ‘ 𝐺 ) ) ) |
89 |
88
|
anbi1d |
⊢ ( 𝑔 = 𝑖 → ( ( 𝑔 = ( 𝑟 ‘ 𝐺 ) ∧ 𝑟 ∈ 𝐸 ) ↔ ( 𝑖 = ( 𝑟 ‘ 𝐺 ) ∧ 𝑟 ∈ 𝐸 ) ) ) |
90 |
|
fveq1 |
⊢ ( 𝑟 = 𝑝 → ( 𝑟 ‘ 𝐺 ) = ( 𝑝 ‘ 𝐺 ) ) |
91 |
90
|
eqeq2d |
⊢ ( 𝑟 = 𝑝 → ( 𝑖 = ( 𝑟 ‘ 𝐺 ) ↔ 𝑖 = ( 𝑝 ‘ 𝐺 ) ) ) |
92 |
|
eleq1w |
⊢ ( 𝑟 = 𝑝 → ( 𝑟 ∈ 𝐸 ↔ 𝑝 ∈ 𝐸 ) ) |
93 |
91 92
|
anbi12d |
⊢ ( 𝑟 = 𝑝 → ( ( 𝑖 = ( 𝑟 ‘ 𝐺 ) ∧ 𝑟 ∈ 𝐸 ) ↔ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) ) |
94 |
86 87 89 93
|
opelopab |
⊢ ( 〈 𝑖 , 𝑝 〉 ∈ { 〈 𝑔 , 𝑟 〉 ∣ ( 𝑔 = ( 𝑟 ‘ 𝐺 ) ∧ 𝑟 ∈ 𝐸 ) } ↔ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) |
95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
dih1dimatlem0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) → ( ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ↔ ( ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ∧ ∃ 𝑡 ∈ 𝐸 ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) ) ) |
96 |
95
|
3expa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ↔ ( ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ∧ ∃ 𝑡 ∈ 𝐸 ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) ) ) |
97 |
|
opelxp |
⊢ ( 〈 𝑖 , 𝑝 〉 ∈ ( 𝑇 × 𝐸 ) ↔ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) |
98 |
86 87
|
opth |
⊢ ( 〈 𝑖 , 𝑝 〉 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 ↔ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) |
99 |
98
|
rexbii |
⊢ ( ∃ 𝑡 ∈ 𝐸 〈 𝑖 , 𝑝 〉 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 ↔ ∃ 𝑡 ∈ 𝐸 ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) |
100 |
97 99
|
anbi12i |
⊢ ( ( 〈 𝑖 , 𝑝 〉 ∈ ( 𝑇 × 𝐸 ) ∧ ∃ 𝑡 ∈ 𝐸 〈 𝑖 , 𝑝 〉 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 ) ↔ ( ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ∧ ∃ 𝑡 ∈ 𝐸 ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) ) |
101 |
96 100
|
bitr4di |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ↔ ( 〈 𝑖 , 𝑝 〉 ∈ ( 𝑇 × 𝐸 ) ∧ ∃ 𝑡 ∈ 𝐸 〈 𝑖 , 𝑝 〉 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 ) ) ) |
102 |
|
eqeq1 |
⊢ ( 𝑢 = 〈 𝑖 , 𝑝 〉 → ( 𝑢 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 ↔ 〈 𝑖 , 𝑝 〉 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 ) ) |
103 |
102
|
rexbidv |
⊢ ( 𝑢 = 〈 𝑖 , 𝑝 〉 → ( ∃ 𝑡 ∈ 𝐸 𝑢 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 ↔ ∃ 𝑡 ∈ 𝐸 〈 𝑖 , 𝑝 〉 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 ) ) |
104 |
103
|
elrab |
⊢ ( 〈 𝑖 , 𝑝 〉 ∈ { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡 ∈ 𝐸 𝑢 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 } ↔ ( 〈 𝑖 , 𝑝 〉 ∈ ( 𝑇 × 𝐸 ) ∧ ∃ 𝑡 ∈ 𝐸 〈 𝑖 , 𝑝 〉 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 ) ) |
105 |
101 104
|
bitr4di |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ↔ 〈 𝑖 , 𝑝 〉 ∈ { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡 ∈ 𝐸 𝑢 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 } ) ) |
106 |
94 105
|
bitr2id |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( 〈 𝑖 , 𝑝 〉 ∈ { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡 ∈ 𝐸 𝑢 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 } ↔ 〈 𝑖 , 𝑝 〉 ∈ { 〈 𝑔 , 𝑟 〉 ∣ ( 𝑔 = ( 𝑟 ‘ 𝐺 ) ∧ 𝑟 ∈ 𝐸 ) } ) ) |
107 |
84 85 106
|
eqrelrdv |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → { 𝑢 ∈ ( 𝑇 × 𝐸 ) ∣ ∃ 𝑡 ∈ 𝐸 𝑢 = 〈 ( 𝑡 ‘ 𝑓 ) , ( 𝑡 ∘ 𝑠 ) 〉 } = { 〈 𝑔 , 𝑟 〉 ∣ ( 𝑔 = ( 𝑟 ‘ 𝐺 ) ∧ 𝑟 ∈ 𝐸 ) } ) |
108 |
80 107
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → { 𝑢 ∣ ∃ 𝑡 ∈ ( Base ‘ 𝐹 ) 𝑢 = ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) } = { 〈 𝑔 , 𝑟 〉 ∣ ( 𝑔 = ( 𝑟 ‘ 𝐺 ) ∧ 𝑟 ∈ 𝐸 ) } ) |
109 |
1 2 53
|
dvhlmod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → 𝑈 ∈ LMod ) |
110 |
1 9 11 2 15
|
dvhelvbasei |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) → 〈 𝑓 , 𝑠 〉 ∈ 𝑉 ) |
111 |
110
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → 〈 𝑓 , 𝑠 〉 ∈ 𝑉 ) |
112 |
13 54 15 16 18
|
lspsn |
⊢ ( ( 𝑈 ∈ LMod ∧ 〈 𝑓 , 𝑠 〉 ∈ 𝑉 ) → ( 𝑁 ‘ { 〈 𝑓 , 𝑠 〉 } ) = { 𝑢 ∣ ∃ 𝑡 ∈ ( Base ‘ 𝐹 ) 𝑢 = ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) } ) |
113 |
109 111 112
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( 𝑁 ‘ { 〈 𝑓 , 𝑠 〉 } ) = { 𝑢 ∣ ∃ 𝑡 ∈ ( Base ‘ 𝐹 ) 𝑢 = ( 𝑡 · 〈 𝑓 , 𝑠 〉 ) } ) |
114 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → 𝑠 ≠ 𝑂 ) |
115 |
5 1 9 11 12 2 13 14
|
tendoinvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) → ( ( 𝐽 ‘ 𝑠 ) ∈ 𝐸 ∧ ( 𝐽 ‘ 𝑠 ) ≠ 𝑂 ) ) |
116 |
115
|
simpld |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) → ( 𝐽 ‘ 𝑠 ) ∈ 𝐸 ) |
117 |
53 70 114 116
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( 𝐽 ‘ 𝑠 ) ∈ 𝐸 ) |
118 |
1 9 11
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐽 ‘ 𝑠 ) ∈ 𝐸 ∧ 𝑓 ∈ 𝑇 ) → ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ∈ 𝑇 ) |
119 |
53 117 68 118
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ∈ 𝑇 ) |
120 |
6 7 1 8
|
lhpocnel2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
121 |
53 120
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( 𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
122 |
6 7 1 9
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ∈ 𝐶 ∧ ¬ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ≤ 𝑊 ) ) |
123 |
53 119 121 122
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ∈ 𝐶 ∧ ¬ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ≤ 𝑊 ) ) |
124 |
|
eqid |
⊢ ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
125 |
6 7 1 124 3
|
dihvalcqat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ∈ 𝐶 ∧ ¬ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) = ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) ) |
126 |
53 123 125
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( 𝐼 ‘ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) = ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) ) |
127 |
6 7 1 8 9 11 124 20
|
dicval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ∈ 𝐶 ∧ ¬ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ≤ 𝑊 ) ) → ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) = { 〈 𝑔 , 𝑟 〉 ∣ ( 𝑔 = ( 𝑟 ‘ 𝐺 ) ∧ 𝑟 ∈ 𝐸 ) } ) |
128 |
53 123 127
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) = { 〈 𝑔 , 𝑟 〉 ∣ ( 𝑔 = ( 𝑟 ‘ 𝐺 ) ∧ 𝑟 ∈ 𝐸 ) } ) |
129 |
126 128
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( 𝐼 ‘ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) = { 〈 𝑔 , 𝑟 〉 ∣ ( 𝑔 = ( 𝑟 ‘ 𝐺 ) ∧ 𝑟 ∈ 𝐸 ) } ) |
130 |
108 113 129
|
3eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( 𝑁 ‘ { 〈 𝑓 , 𝑠 〉 } ) = ( 𝐼 ‘ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) ) |
131 |
5 1 3
|
dihfn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 Fn 𝐵 ) |
132 |
131
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) → 𝐼 Fn 𝐵 ) |
133 |
132
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → 𝐼 Fn 𝐵 ) |
134 |
|
simplll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → 𝐾 ∈ HL ) |
135 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
136 |
134 135
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → 𝐾 ∈ OP ) |
137 |
5 1
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
138 |
137
|
ad3antlr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → 𝑊 ∈ 𝐵 ) |
139 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
140 |
5 139
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑊 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐵 ) |
141 |
136 138 140
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐵 ) |
142 |
8 141
|
eqeltrid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → 𝑃 ∈ 𝐵 ) |
143 |
5 1 9
|
ltrncl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ∈ 𝐵 ) |
144 |
53 119 142 143
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ∈ 𝐵 ) |
145 |
|
fnfvelrn |
⊢ ( ( 𝐼 Fn 𝐵 ∧ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) ∈ ran 𝐼 ) |
146 |
133 144 145
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( 𝐼 ‘ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) ∈ ran 𝐼 ) |
147 |
130 146
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) ∧ 𝑠 ≠ 𝑂 ) → ( 𝑁 ‘ { 〈 𝑓 , 𝑠 〉 } ) ∈ ran 𝐼 ) |
148 |
52 147
|
pm2.61dane |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ) → ( 𝑁 ‘ { 〈 𝑓 , 𝑠 〉 } ) ∈ ran 𝐼 ) |
149 |
148
|
ralrimivva |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ∀ 𝑓 ∈ 𝑇 ∀ 𝑠 ∈ 𝐸 ( 𝑁 ‘ { 〈 𝑓 , 𝑠 〉 } ) ∈ ran 𝐼 ) |
150 |
|
sneq |
⊢ ( 𝑣 = 〈 𝑓 , 𝑠 〉 → { 𝑣 } = { 〈 𝑓 , 𝑠 〉 } ) |
151 |
150
|
fveq2d |
⊢ ( 𝑣 = 〈 𝑓 , 𝑠 〉 → ( 𝑁 ‘ { 𝑣 } ) = ( 𝑁 ‘ { 〈 𝑓 , 𝑠 〉 } ) ) |
152 |
151
|
eleq1d |
⊢ ( 𝑣 = 〈 𝑓 , 𝑠 〉 → ( ( 𝑁 ‘ { 𝑣 } ) ∈ ran 𝐼 ↔ ( 𝑁 ‘ { 〈 𝑓 , 𝑠 〉 } ) ∈ ran 𝐼 ) ) |
153 |
152
|
ralxp |
⊢ ( ∀ 𝑣 ∈ ( 𝑇 × 𝐸 ) ( 𝑁 ‘ { 𝑣 } ) ∈ ran 𝐼 ↔ ∀ 𝑓 ∈ 𝑇 ∀ 𝑠 ∈ 𝐸 ( 𝑁 ‘ { 〈 𝑓 , 𝑠 〉 } ) ∈ ran 𝐼 ) |
154 |
149 153
|
sylibr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ∀ 𝑣 ∈ ( 𝑇 × 𝐸 ) ( 𝑁 ‘ { 𝑣 } ) ∈ ran 𝐼 ) |
155 |
154
|
r19.21bi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑣 ∈ ( 𝑇 × 𝐸 ) ) → ( 𝑁 ‘ { 𝑣 } ) ∈ ran 𝐼 ) |
156 |
30 155
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑁 ‘ { 𝑣 } ) ∈ ran 𝐼 ) |
157 |
|
eleq1a |
⊢ ( ( 𝑁 ‘ { 𝑣 } ) ∈ ran 𝐼 → ( 𝐷 = ( 𝑁 ‘ { 𝑣 } ) → 𝐷 ∈ ran 𝐼 ) ) |
158 |
156 157
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐷 = ( 𝑁 ‘ { 𝑣 } ) → 𝐷 ∈ ran 𝐼 ) ) |
159 |
158
|
rexlimdva |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) 𝐷 = ( 𝑁 ‘ { 𝑣 } ) → 𝐷 ∈ ran 𝐼 ) ) |
160 |
159
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐷 ∈ 𝐴 ) → ( ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) 𝐷 = ( 𝑁 ‘ { 𝑣 } ) → 𝐷 ∈ ran 𝐼 ) ) |
161 |
25 160
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐷 ∈ 𝐴 ) → 𝐷 ∈ ran 𝐼 ) |