Step |
Hyp |
Ref |
Expression |
1 |
|
dih1dimat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dih1dimat.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dih1dimat.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dih1dimat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
5 |
|
dih1dimat.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
6 |
|
dih1dimat.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
7 |
|
dih1dimat.c |
⊢ 𝐶 = ( Atoms ‘ 𝐾 ) |
8 |
|
dih1dimat.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
dih1dimat.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
dih1dimat.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
dih1dimat.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
|
dih1dimat.o |
⊢ 𝑂 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
13 |
|
dih1dimat.d |
⊢ 𝐹 = ( Scalar ‘ 𝑈 ) |
14 |
|
dih1dimat.j |
⊢ 𝐽 = ( invr ‘ 𝐹 ) |
15 |
|
dih1dimat.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
16 |
|
dih1dimat.m |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
17 |
|
dih1dimat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
18 |
|
dih1dimat.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
19 |
|
dih1dimat.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
20 |
|
dih1dimat.g |
⊢ 𝐺 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) |
21 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → 𝑖 = ( 𝑝 ‘ 𝐺 ) ) |
22 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
23 |
|
simprr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → 𝑝 ∈ 𝐸 ) |
24 |
6 7 1 8
|
lhpocnel2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
25 |
22 24
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → ( 𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
26 |
|
simpl2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → 𝑠 ∈ 𝐸 ) |
27 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → 𝑠 ≠ 𝑂 ) |
28 |
5 1 9 11 12 2 13 14
|
tendoinvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) → ( ( 𝐽 ‘ 𝑠 ) ∈ 𝐸 ∧ ( 𝐽 ‘ 𝑠 ) ≠ 𝑂 ) ) |
29 |
28
|
simpld |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) → ( 𝐽 ‘ 𝑠 ) ∈ 𝐸 ) |
30 |
22 26 27 29
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → ( 𝐽 ‘ 𝑠 ) ∈ 𝐸 ) |
31 |
|
simpl2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → 𝑓 ∈ 𝑇 ) |
32 |
1 9 11
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐽 ‘ 𝑠 ) ∈ 𝐸 ∧ 𝑓 ∈ 𝑇 ) → ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ∈ 𝑇 ) |
33 |
22 30 31 32
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ∈ 𝑇 ) |
34 |
6 7 1 9
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ∈ 𝐶 ∧ ¬ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ≤ 𝑊 ) ) |
35 |
22 33 25 34
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → ( ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ∈ 𝐶 ∧ ¬ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ≤ 𝑊 ) ) |
36 |
6 7 1 9 20
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ∈ 𝐶 ∧ ¬ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ≤ 𝑊 ) ) → 𝐺 ∈ 𝑇 ) |
37 |
22 25 35 36
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → 𝐺 ∈ 𝑇 ) |
38 |
1 9 11
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇 ) → ( 𝑝 ‘ 𝐺 ) ∈ 𝑇 ) |
39 |
22 23 37 38
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → ( 𝑝 ‘ 𝐺 ) ∈ 𝑇 ) |
40 |
21 39
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → 𝑖 ∈ 𝑇 ) |
41 |
1 11
|
tendococl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ 𝐸 ∧ ( 𝐽 ‘ 𝑠 ) ∈ 𝐸 ) → ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) ∈ 𝐸 ) |
42 |
22 23 30 41
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) ∈ 𝐸 ) |
43 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
44 |
24
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) → ( 𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
45 |
29
|
3adant2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) → ( 𝐽 ‘ 𝑠 ) ∈ 𝐸 ) |
46 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) → 𝑓 ∈ 𝑇 ) |
47 |
43 45 46 32
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) → ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ∈ 𝑇 ) |
48 |
43 47 44 34
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) → ( ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ∈ 𝐶 ∧ ¬ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ≤ 𝑊 ) ) |
49 |
43 44 48 36
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) → 𝐺 ∈ 𝑇 ) |
50 |
6 7 1 9 20
|
ltrniotaval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ∈ 𝐶 ∧ ¬ ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ≤ 𝑊 ) ) → ( 𝐺 ‘ 𝑃 ) = ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) |
51 |
43 44 48 50
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) → ( 𝐺 ‘ 𝑃 ) = ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) |
52 |
6 7 1 9
|
cdlemd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐶 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐺 ‘ 𝑃 ) = ( ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ‘ 𝑃 ) ) → 𝐺 = ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ) |
53 |
43 49 47 44 51 52
|
syl311anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) → 𝐺 = ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ) |
54 |
53
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → 𝐺 = ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ) |
55 |
54
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → ( 𝑝 ‘ 𝐺 ) = ( 𝑝 ‘ ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ) ) |
56 |
1 9 11
|
tendocoval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ 𝐸 ∧ ( 𝐽 ‘ 𝑠 ) ∈ 𝐸 ) ∧ 𝑓 ∈ 𝑇 ) → ( ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) ‘ 𝑓 ) = ( 𝑝 ‘ ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ) ) |
57 |
22 23 30 31 56
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → ( ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) ‘ 𝑓 ) = ( 𝑝 ‘ ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ) ) |
58 |
55 21 57
|
3eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → 𝑖 = ( ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) ‘ 𝑓 ) ) |
59 |
|
coass |
⊢ ( ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) ∘ 𝑠 ) = ( 𝑝 ∘ ( ( 𝐽 ‘ 𝑠 ) ∘ 𝑠 ) ) |
60 |
5 1 9 11 12 2 13 14
|
tendolinv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) → ( ( 𝐽 ‘ 𝑠 ) ∘ 𝑠 ) = ( I ↾ 𝑇 ) ) |
61 |
22 26 27 60
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → ( ( 𝐽 ‘ 𝑠 ) ∘ 𝑠 ) = ( I ↾ 𝑇 ) ) |
62 |
61
|
coeq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → ( 𝑝 ∘ ( ( 𝐽 ‘ 𝑠 ) ∘ 𝑠 ) ) = ( 𝑝 ∘ ( I ↾ 𝑇 ) ) ) |
63 |
1 9 11
|
tendo1mulr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ 𝐸 ) → ( 𝑝 ∘ ( I ↾ 𝑇 ) ) = 𝑝 ) |
64 |
22 23 63
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → ( 𝑝 ∘ ( I ↾ 𝑇 ) ) = 𝑝 ) |
65 |
62 64
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → ( 𝑝 ∘ ( ( 𝐽 ‘ 𝑠 ) ∘ 𝑠 ) ) = 𝑝 ) |
66 |
59 65
|
eqtr2id |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → 𝑝 = ( ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) ∘ 𝑠 ) ) |
67 |
|
fveq1 |
⊢ ( 𝑡 = ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) → ( 𝑡 ‘ 𝑓 ) = ( ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) ‘ 𝑓 ) ) |
68 |
67
|
eqeq2d |
⊢ ( 𝑡 = ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) → ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ↔ 𝑖 = ( ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) ‘ 𝑓 ) ) ) |
69 |
|
coeq1 |
⊢ ( 𝑡 = ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) → ( 𝑡 ∘ 𝑠 ) = ( ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) ∘ 𝑠 ) ) |
70 |
69
|
eqeq2d |
⊢ ( 𝑡 = ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) → ( 𝑝 = ( 𝑡 ∘ 𝑠 ) ↔ 𝑝 = ( ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) ∘ 𝑠 ) ) ) |
71 |
68 70
|
anbi12d |
⊢ ( 𝑡 = ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) → ( ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ↔ ( 𝑖 = ( ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) ‘ 𝑓 ) ∧ 𝑝 = ( ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) ∘ 𝑠 ) ) ) ) |
72 |
71
|
rspcev |
⊢ ( ( ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) ∈ 𝐸 ∧ ( 𝑖 = ( ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) ‘ 𝑓 ) ∧ 𝑝 = ( ( 𝑝 ∘ ( 𝐽 ‘ 𝑠 ) ) ∘ 𝑠 ) ) ) → ∃ 𝑡 ∈ 𝐸 ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) |
73 |
42 58 66 72
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → ∃ 𝑡 ∈ 𝐸 ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) |
74 |
40 23 73
|
jca31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) → ( ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ∧ ∃ 𝑡 ∈ 𝐸 ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) ) |
75 |
|
simp3r |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → 𝑝 = ( 𝑡 ∘ 𝑠 ) ) |
76 |
75
|
fveq1d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → ( 𝑝 ‘ ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ) = ( ( 𝑡 ∘ 𝑠 ) ‘ ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ) ) |
77 |
|
simp1l1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
78 |
|
simp2 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → 𝑡 ∈ 𝐸 ) |
79 |
|
simpl2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) → 𝑠 ∈ 𝐸 ) |
80 |
79
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → 𝑠 ∈ 𝐸 ) |
81 |
1 11
|
tendococl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑡 ∈ 𝐸 ∧ 𝑠 ∈ 𝐸 ) → ( 𝑡 ∘ 𝑠 ) ∈ 𝐸 ) |
82 |
77 78 80 81
|
syl3anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → ( 𝑡 ∘ 𝑠 ) ∈ 𝐸 ) |
83 |
|
simp1l3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → 𝑠 ≠ 𝑂 ) |
84 |
77 80 83 29
|
syl3anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → ( 𝐽 ‘ 𝑠 ) ∈ 𝐸 ) |
85 |
|
simpl2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) → 𝑓 ∈ 𝑇 ) |
86 |
85
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → 𝑓 ∈ 𝑇 ) |
87 |
1 9 11
|
tendocoval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑡 ∘ 𝑠 ) ∈ 𝐸 ∧ ( 𝐽 ‘ 𝑠 ) ∈ 𝐸 ) ∧ 𝑓 ∈ 𝑇 ) → ( ( ( 𝑡 ∘ 𝑠 ) ∘ ( 𝐽 ‘ 𝑠 ) ) ‘ 𝑓 ) = ( ( 𝑡 ∘ 𝑠 ) ‘ ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ) ) |
88 |
77 82 84 86 87
|
syl121anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → ( ( ( 𝑡 ∘ 𝑠 ) ∘ ( 𝐽 ‘ 𝑠 ) ) ‘ 𝑓 ) = ( ( 𝑡 ∘ 𝑠 ) ‘ ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ) ) |
89 |
|
coass |
⊢ ( ( 𝑡 ∘ 𝑠 ) ∘ ( 𝐽 ‘ 𝑠 ) ) = ( 𝑡 ∘ ( 𝑠 ∘ ( 𝐽 ‘ 𝑠 ) ) ) |
90 |
5 1 9 11 12 2 13 14
|
tendorinv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂 ) → ( 𝑠 ∘ ( 𝐽 ‘ 𝑠 ) ) = ( I ↾ 𝑇 ) ) |
91 |
77 80 83 90
|
syl3anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → ( 𝑠 ∘ ( 𝐽 ‘ 𝑠 ) ) = ( I ↾ 𝑇 ) ) |
92 |
91
|
coeq2d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → ( 𝑡 ∘ ( 𝑠 ∘ ( 𝐽 ‘ 𝑠 ) ) ) = ( 𝑡 ∘ ( I ↾ 𝑇 ) ) ) |
93 |
1 9 11
|
tendo1mulr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑡 ∈ 𝐸 ) → ( 𝑡 ∘ ( I ↾ 𝑇 ) ) = 𝑡 ) |
94 |
77 78 93
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → ( 𝑡 ∘ ( I ↾ 𝑇 ) ) = 𝑡 ) |
95 |
92 94
|
eqtrd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → ( 𝑡 ∘ ( 𝑠 ∘ ( 𝐽 ‘ 𝑠 ) ) ) = 𝑡 ) |
96 |
89 95
|
syl5eq |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → ( ( 𝑡 ∘ 𝑠 ) ∘ ( 𝐽 ‘ 𝑠 ) ) = 𝑡 ) |
97 |
96
|
fveq1d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → ( ( ( 𝑡 ∘ 𝑠 ) ∘ ( 𝐽 ‘ 𝑠 ) ) ‘ 𝑓 ) = ( 𝑡 ‘ 𝑓 ) ) |
98 |
76 88 97
|
3eqtr2rd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → ( 𝑡 ‘ 𝑓 ) = ( 𝑝 ‘ ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ) ) |
99 |
|
simp3l |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → 𝑖 = ( 𝑡 ‘ 𝑓 ) ) |
100 |
53
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) → 𝐺 = ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ) |
101 |
100
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → 𝐺 = ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ) |
102 |
101
|
fveq2d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → ( 𝑝 ‘ 𝐺 ) = ( 𝑝 ‘ ( ( 𝐽 ‘ 𝑠 ) ‘ 𝑓 ) ) ) |
103 |
98 99 102
|
3eqtr4d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) ∧ 𝑡 ∈ 𝐸 ∧ ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) → 𝑖 = ( 𝑝 ‘ 𝐺 ) ) |
104 |
103
|
rexlimdv3a |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ) → ( ∃ 𝑡 ∈ 𝐸 ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) → 𝑖 = ( 𝑝 ‘ 𝐺 ) ) ) |
105 |
104
|
impr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ∧ ∃ 𝑡 ∈ 𝐸 ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) ) → 𝑖 = ( 𝑝 ‘ 𝐺 ) ) |
106 |
|
simprlr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ∧ ∃ 𝑡 ∈ 𝐸 ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) ) → 𝑝 ∈ 𝐸 ) |
107 |
105 106
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) ∧ ( ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ∧ ∃ 𝑡 ∈ 𝐸 ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) ) → ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ) |
108 |
74 107
|
impbida |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ 𝑠 ≠ 𝑂 ) → ( ( 𝑖 = ( 𝑝 ‘ 𝐺 ) ∧ 𝑝 ∈ 𝐸 ) ↔ ( ( 𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸 ) ∧ ∃ 𝑡 ∈ 𝐸 ( 𝑖 = ( 𝑡 ‘ 𝑓 ) ∧ 𝑝 = ( 𝑡 ∘ 𝑠 ) ) ) ) ) |