Step |
Hyp |
Ref |
Expression |
1 |
|
dih1dimat.h |
|
2 |
|
dih1dimat.u |
|
3 |
|
dih1dimat.i |
|
4 |
|
dih1dimat.a |
|
5 |
|
dih1dimat.b |
|
6 |
|
dih1dimat.l |
|
7 |
|
dih1dimat.c |
|
8 |
|
dih1dimat.p |
|
9 |
|
dih1dimat.t |
|
10 |
|
dih1dimat.r |
|
11 |
|
dih1dimat.e |
|
12 |
|
dih1dimat.o |
|
13 |
|
dih1dimat.d |
|
14 |
|
dih1dimat.j |
|
15 |
|
dih1dimat.v |
|
16 |
|
dih1dimat.m |
|
17 |
|
dih1dimat.s |
|
18 |
|
dih1dimat.n |
|
19 |
|
dih1dimat.z |
|
20 |
|
dih1dimat.g |
|
21 |
|
simprl |
|
22 |
|
simpl1 |
|
23 |
|
simprr |
|
24 |
6 7 1 8
|
lhpocnel2 |
|
25 |
22 24
|
syl |
|
26 |
|
simpl2r |
|
27 |
|
simpl3 |
|
28 |
5 1 9 11 12 2 13 14
|
tendoinvcl |
|
29 |
28
|
simpld |
|
30 |
22 26 27 29
|
syl3anc |
|
31 |
|
simpl2l |
|
32 |
1 9 11
|
tendocl |
|
33 |
22 30 31 32
|
syl3anc |
|
34 |
6 7 1 9
|
ltrnel |
|
35 |
22 33 25 34
|
syl3anc |
|
36 |
6 7 1 9 20
|
ltrniotacl |
|
37 |
22 25 35 36
|
syl3anc |
|
38 |
1 9 11
|
tendocl |
|
39 |
22 23 37 38
|
syl3anc |
|
40 |
21 39
|
eqeltrd |
|
41 |
1 11
|
tendococl |
|
42 |
22 23 30 41
|
syl3anc |
|
43 |
|
simp1 |
|
44 |
24
|
3ad2ant1 |
|
45 |
29
|
3adant2l |
|
46 |
|
simp2l |
|
47 |
43 45 46 32
|
syl3anc |
|
48 |
43 47 44 34
|
syl3anc |
|
49 |
43 44 48 36
|
syl3anc |
|
50 |
6 7 1 9 20
|
ltrniotaval |
|
51 |
43 44 48 50
|
syl3anc |
|
52 |
6 7 1 9
|
cdlemd |
|
53 |
43 49 47 44 51 52
|
syl311anc |
|
54 |
53
|
adantr |
|
55 |
54
|
fveq2d |
|
56 |
1 9 11
|
tendocoval |
|
57 |
22 23 30 31 56
|
syl121anc |
|
58 |
55 21 57
|
3eqtr4d |
|
59 |
|
coass |
|
60 |
5 1 9 11 12 2 13 14
|
tendolinv |
|
61 |
22 26 27 60
|
syl3anc |
|
62 |
61
|
coeq2d |
|
63 |
1 9 11
|
tendo1mulr |
|
64 |
22 23 63
|
syl2anc |
|
65 |
62 64
|
eqtrd |
|
66 |
59 65
|
eqtr2id |
|
67 |
|
fveq1 |
|
68 |
67
|
eqeq2d |
|
69 |
|
coeq1 |
|
70 |
69
|
eqeq2d |
|
71 |
68 70
|
anbi12d |
|
72 |
71
|
rspcev |
|
73 |
42 58 66 72
|
syl12anc |
|
74 |
40 23 73
|
jca31 |
|
75 |
|
simp3r |
|
76 |
75
|
fveq1d |
|
77 |
|
simp1l1 |
|
78 |
|
simp2 |
|
79 |
|
simpl2r |
|
80 |
79
|
3ad2ant1 |
|
81 |
1 11
|
tendococl |
|
82 |
77 78 80 81
|
syl3anc |
|
83 |
|
simp1l3 |
|
84 |
77 80 83 29
|
syl3anc |
|
85 |
|
simpl2l |
|
86 |
85
|
3ad2ant1 |
|
87 |
1 9 11
|
tendocoval |
|
88 |
77 82 84 86 87
|
syl121anc |
|
89 |
|
coass |
|
90 |
5 1 9 11 12 2 13 14
|
tendorinv |
|
91 |
77 80 83 90
|
syl3anc |
|
92 |
91
|
coeq2d |
|
93 |
1 9 11
|
tendo1mulr |
|
94 |
77 78 93
|
syl2anc |
|
95 |
92 94
|
eqtrd |
|
96 |
89 95
|
eqtrid |
|
97 |
96
|
fveq1d |
|
98 |
76 88 97
|
3eqtr2rd |
|
99 |
|
simp3l |
|
100 |
53
|
adantr |
|
101 |
100
|
3ad2ant1 |
|
102 |
101
|
fveq2d |
|
103 |
98 99 102
|
3eqtr4d |
|
104 |
103
|
rexlimdv3a |
|
105 |
104
|
impr |
|
106 |
|
simprlr |
|
107 |
105 106
|
jca |
|
108 |
74 107
|
impbida |
|