Metamath Proof Explorer


Theorem dih1dimat

Description: Any 1-dimensional subspace is a value of isomorphism H. (Contributed by NM, 11-Apr-2014)

Ref Expression
Hypotheses dih1dimat.h H = LHyp K
dih1dimat.u U = DVecH K W
dih1dimat.i I = DIsoH K W
dih1dimat.a A = LSAtoms U
Assertion dih1dimat K HL W H P A P ran I

Proof

Step Hyp Ref Expression
1 dih1dimat.h H = LHyp K
2 dih1dimat.u U = DVecH K W
3 dih1dimat.i I = DIsoH K W
4 dih1dimat.a A = LSAtoms U
5 eqid Base K = Base K
6 eqid K = K
7 eqid Atoms K = Atoms K
8 eqid oc K W = oc K W
9 eqid LTrn K W = LTrn K W
10 eqid trL K W = trL K W
11 eqid TEndo K W = TEndo K W
12 eqid h LTrn K W I Base K = h LTrn K W I Base K
13 eqid Scalar U = Scalar U
14 eqid inv r Scalar U = inv r Scalar U
15 eqid Base U = Base U
16 eqid U = U
17 eqid LSubSp U = LSubSp U
18 eqid LSpan U = LSpan U
19 eqid 0 U = 0 U
20 eqid ι h LTrn K W | h oc K W = inv r Scalar U s f oc K W = ι h LTrn K W | h oc K W = inv r Scalar U s f oc K W
21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 dih1dimatlem K HL W H P A P ran I