Metamath Proof Explorer


Theorem dihlsprn

Description: The span of a vector belongs to the range of isomorphism H. (Contributed by NM, 27-Apr-2014)

Ref Expression
Hypotheses dihlsprn.h H = LHyp K
dihlsprn.u U = DVecH K W
dihlsprn.v V = Base U
dihlsprn.n N = LSpan U
dihlsprn.i I = DIsoH K W
Assertion dihlsprn K HL W H X V N X ran I

Proof

Step Hyp Ref Expression
1 dihlsprn.h H = LHyp K
2 dihlsprn.u U = DVecH K W
3 dihlsprn.v V = Base U
4 dihlsprn.n N = LSpan U
5 dihlsprn.i I = DIsoH K W
6 simpr K HL W H X V X = 0 U X = 0 U
7 6 sneqd K HL W H X V X = 0 U X = 0 U
8 7 fveq2d K HL W H X V X = 0 U N X = N 0 U
9 simpll K HL W H X V X = 0 U K HL W H
10 1 2 9 dvhlmod K HL W H X V X = 0 U U LMod
11 eqid 0 U = 0 U
12 11 4 lspsn0 U LMod N 0 U = 0 U
13 10 12 syl K HL W H X V X = 0 U N 0 U = 0 U
14 8 13 eqtrd K HL W H X V X = 0 U N X = 0 U
15 1 5 2 11 dih0rn K HL W H 0 U ran I
16 15 ad2antrr K HL W H X V X = 0 U 0 U ran I
17 14 16 eqeltrd K HL W H X V X = 0 U N X ran I
18 simpll K HL W H X V X 0 U K HL W H
19 1 2 18 dvhlmod K HL W H X V X 0 U U LMod
20 simplr K HL W H X V X 0 U X V
21 simpr K HL W H X V X 0 U X 0 U
22 eqid LSAtoms U = LSAtoms U
23 3 4 11 22 lsatlspsn2 U LMod X V X 0 U N X LSAtoms U
24 19 20 21 23 syl3anc K HL W H X V X 0 U N X LSAtoms U
25 1 2 5 22 dih1dimat K HL W H N X LSAtoms U N X ran I
26 18 24 25 syl2anc K HL W H X V X 0 U N X ran I
27 17 26 pm2.61dane K HL W H X V N X ran I