Step |
Hyp |
Ref |
Expression |
1 |
|
dihlsprn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dihlsprn.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dihlsprn.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
dihlsprn.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
5 |
|
dihlsprn.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → 𝑋 = ( 0g ‘ 𝑈 ) ) |
7 |
6
|
sneqd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → { 𝑋 } = { ( 0g ‘ 𝑈 ) } ) |
8 |
7
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) ) |
9 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
1 2 9
|
dvhlmod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → 𝑈 ∈ LMod ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
12 |
11 4
|
lspsn0 |
⊢ ( 𝑈 ∈ LMod → ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) = { ( 0g ‘ 𝑈 ) } ) |
13 |
10 12
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) = { ( 0g ‘ 𝑈 ) } ) |
14 |
8 13
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 } ) = { ( 0g ‘ 𝑈 ) } ) |
15 |
1 5 2 11
|
dih0rn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → { ( 0g ‘ 𝑈 ) } ∈ ran 𝐼 ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → { ( 0g ‘ 𝑈 ) } ∈ ran 𝐼 ) |
17 |
14 16
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
18 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
19 |
1 2 18
|
dvhlmod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → 𝑈 ∈ LMod ) |
20 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → 𝑋 ∈ 𝑉 ) |
21 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → 𝑋 ≠ ( 0g ‘ 𝑈 ) ) |
22 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
23 |
3 4 11 22
|
lsatlspsn2 |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
24 |
19 20 21 23
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
25 |
1 2 5 22
|
dih1dimat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
26 |
18 24 25
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
27 |
17 26
|
pm2.61dane |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |