| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihlsprn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dihlsprn.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dihlsprn.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
dihlsprn.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 5 |
|
dihlsprn.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → 𝑋 = ( 0g ‘ 𝑈 ) ) |
| 7 |
6
|
sneqd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → { 𝑋 } = { ( 0g ‘ 𝑈 ) } ) |
| 8 |
7
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) ) |
| 9 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
1 2 9
|
dvhlmod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → 𝑈 ∈ LMod ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 12 |
11 4
|
lspsn0 |
⊢ ( 𝑈 ∈ LMod → ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) = { ( 0g ‘ 𝑈 ) } ) |
| 13 |
10 12
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) = { ( 0g ‘ 𝑈 ) } ) |
| 14 |
8 13
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 } ) = { ( 0g ‘ 𝑈 ) } ) |
| 15 |
1 5 2 11
|
dih0rn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → { ( 0g ‘ 𝑈 ) } ∈ ran 𝐼 ) |
| 16 |
15
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → { ( 0g ‘ 𝑈 ) } ∈ ran 𝐼 ) |
| 17 |
14 16
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
| 18 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 19 |
1 2 18
|
dvhlmod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → 𝑈 ∈ LMod ) |
| 20 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → 𝑋 ∈ 𝑉 ) |
| 21 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → 𝑋 ≠ ( 0g ‘ 𝑈 ) ) |
| 22 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
| 23 |
3 4 11 22
|
lsatlspsn2 |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
| 24 |
19 20 21 23
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
| 25 |
1 2 5 22
|
dih1dimat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
| 26 |
18 24 25
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
| 27 |
17 26
|
pm2.61dane |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |