Step |
Hyp |
Ref |
Expression |
1 |
|
dih1dor0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dih1dor0.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dihldor0.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
dih1dor0.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
5 |
|
dih1dor0.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
6 |
|
dih1dor0.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑇 ∈ 𝑆 ) ∧ 𝑇 = ( 𝑁 ‘ { 𝑋 } ) ) → 𝑇 = ( 𝑁 ‘ { 𝑋 } ) ) |
8 |
1 2 3 5 6
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
9 |
8
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
10 |
9
|
ad2antrr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑇 ∈ 𝑆 ) ∧ 𝑇 = ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
11 |
7 10
|
eqeltrd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑇 ∈ 𝑆 ) ∧ 𝑇 = ( 𝑁 ‘ { 𝑋 } ) ) → 𝑇 ∈ ran 𝐼 ) |
12 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑇 ∈ 𝑆 ) ∧ 𝑇 = { ( 0g ‘ 𝑈 ) } ) → 𝑇 = { ( 0g ‘ 𝑈 ) } ) |
13 |
|
simpll1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑇 ∈ 𝑆 ) ∧ 𝑇 = { ( 0g ‘ 𝑈 ) } ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
15 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
16 |
14 1 6 2 15
|
dih0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) = { ( 0g ‘ 𝑈 ) } ) |
17 |
13 16
|
syl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑇 ∈ 𝑆 ) ∧ 𝑇 = { ( 0g ‘ 𝑈 ) } ) → ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) = { ( 0g ‘ 𝑈 ) } ) |
18 |
12 17
|
eqtr4d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑇 ∈ 𝑆 ) ∧ 𝑇 = { ( 0g ‘ 𝑈 ) } ) → 𝑇 = ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
20 |
19 1 6
|
dihfn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 Fn ( Base ‘ 𝐾 ) ) |
21 |
13 20
|
syl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑇 ∈ 𝑆 ) ∧ 𝑇 = { ( 0g ‘ 𝑈 ) } ) → 𝐼 Fn ( Base ‘ 𝐾 ) ) |
22 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → 𝐾 ∈ HL ) |
23 |
22
|
ad2antrr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑇 ∈ 𝑆 ) ∧ 𝑇 = { ( 0g ‘ 𝑈 ) } ) → 𝐾 ∈ HL ) |
24 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
25 |
19 14
|
op0cl |
⊢ ( 𝐾 ∈ OP → ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
26 |
23 24 25
|
3syl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑇 ∈ 𝑆 ) ∧ 𝑇 = { ( 0g ‘ 𝑈 ) } ) → ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
27 |
|
fnfvelrn |
⊢ ( ( 𝐼 Fn ( Base ‘ 𝐾 ) ∧ ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) ∈ ran 𝐼 ) |
28 |
21 26 27
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑇 ∈ 𝑆 ) ∧ 𝑇 = { ( 0g ‘ 𝑈 ) } ) → ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) ∈ ran 𝐼 ) |
29 |
18 28
|
eqeltrd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑇 ∈ 𝑆 ) ∧ 𝑇 = { ( 0g ‘ 𝑈 ) } ) → 𝑇 ∈ ran 𝐼 ) |
30 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑇 ∈ 𝑆 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
31 |
1 2 30
|
dvhlvec |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑇 ∈ 𝑆 ) → 𝑈 ∈ LVec ) |
32 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑇 ∈ 𝑆 ) → 𝑇 ∈ 𝑆 ) |
33 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑇 ∈ 𝑆 ) → 𝑋 ∈ 𝑉 ) |
34 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑇 ∈ 𝑆 ) → 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
35 |
3 15 4 5
|
lspsnat |
⊢ ( ( ( 𝑈 ∈ LVec ∧ 𝑇 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑇 = ( 𝑁 ‘ { 𝑋 } ) ∨ 𝑇 = { ( 0g ‘ 𝑈 ) } ) ) |
36 |
31 32 33 34 35
|
syl31anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑇 ∈ 𝑆 ) → ( 𝑇 = ( 𝑁 ‘ { 𝑋 } ) ∨ 𝑇 = { ( 0g ‘ 𝑈 ) } ) ) |
37 |
11 29 36
|
mpjaodan |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑇 ∈ 𝑆 ) → 𝑇 ∈ ran 𝐼 ) |
38 |
37
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑇 ∈ 𝑆 → 𝑇 ∈ ran 𝐼 ) ) |
39 |
1 2 6 4
|
dihsslss |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ran 𝐼 ⊆ 𝑆 ) |
40 |
39
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ran 𝐼 ⊆ 𝑆 ) |
41 |
40
|
sseld |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑇 ∈ ran 𝐼 → 𝑇 ∈ 𝑆 ) ) |
42 |
38 41
|
impbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑇 ∈ 𝑆 ↔ 𝑇 ∈ ran 𝐼 ) ) |