| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dih1dor0.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dih1dor0.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
dihldor0.v |
|- V = ( Base ` U ) |
| 4 |
|
dih1dor0.s |
|- S = ( LSubSp ` U ) |
| 5 |
|
dih1dor0.n |
|- N = ( LSpan ` U ) |
| 6 |
|
dih1dor0.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 7 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) /\ T e. S ) /\ T = ( N ` { X } ) ) -> T = ( N ` { X } ) ) |
| 8 |
1 2 3 5 6
|
dihlsprn |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. V ) -> ( N ` { X } ) e. ran I ) |
| 9 |
8
|
3adant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) -> ( N ` { X } ) e. ran I ) |
| 10 |
9
|
ad2antrr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) /\ T e. S ) /\ T = ( N ` { X } ) ) -> ( N ` { X } ) e. ran I ) |
| 11 |
7 10
|
eqeltrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) /\ T e. S ) /\ T = ( N ` { X } ) ) -> T e. ran I ) |
| 12 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) /\ T e. S ) /\ T = { ( 0g ` U ) } ) -> T = { ( 0g ` U ) } ) |
| 13 |
|
simpll1 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) /\ T e. S ) /\ T = { ( 0g ` U ) } ) -> ( K e. HL /\ W e. H ) ) |
| 14 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 15 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
| 16 |
14 1 6 2 15
|
dih0 |
|- ( ( K e. HL /\ W e. H ) -> ( I ` ( 0. ` K ) ) = { ( 0g ` U ) } ) |
| 17 |
13 16
|
syl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) /\ T e. S ) /\ T = { ( 0g ` U ) } ) -> ( I ` ( 0. ` K ) ) = { ( 0g ` U ) } ) |
| 18 |
12 17
|
eqtr4d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) /\ T e. S ) /\ T = { ( 0g ` U ) } ) -> T = ( I ` ( 0. ` K ) ) ) |
| 19 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 20 |
19 1 6
|
dihfn |
|- ( ( K e. HL /\ W e. H ) -> I Fn ( Base ` K ) ) |
| 21 |
13 20
|
syl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) /\ T e. S ) /\ T = { ( 0g ` U ) } ) -> I Fn ( Base ` K ) ) |
| 22 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) -> K e. HL ) |
| 23 |
22
|
ad2antrr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) /\ T e. S ) /\ T = { ( 0g ` U ) } ) -> K e. HL ) |
| 24 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 25 |
19 14
|
op0cl |
|- ( K e. OP -> ( 0. ` K ) e. ( Base ` K ) ) |
| 26 |
23 24 25
|
3syl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) /\ T e. S ) /\ T = { ( 0g ` U ) } ) -> ( 0. ` K ) e. ( Base ` K ) ) |
| 27 |
|
fnfvelrn |
|- ( ( I Fn ( Base ` K ) /\ ( 0. ` K ) e. ( Base ` K ) ) -> ( I ` ( 0. ` K ) ) e. ran I ) |
| 28 |
21 26 27
|
syl2anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) /\ T e. S ) /\ T = { ( 0g ` U ) } ) -> ( I ` ( 0. ` K ) ) e. ran I ) |
| 29 |
18 28
|
eqeltrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) /\ T e. S ) /\ T = { ( 0g ` U ) } ) -> T e. ran I ) |
| 30 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) /\ T e. S ) -> ( K e. HL /\ W e. H ) ) |
| 31 |
1 2 30
|
dvhlvec |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) /\ T e. S ) -> U e. LVec ) |
| 32 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) /\ T e. S ) -> T e. S ) |
| 33 |
|
simpl2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) /\ T e. S ) -> X e. V ) |
| 34 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) /\ T e. S ) -> T C_ ( N ` { X } ) ) |
| 35 |
3 15 4 5
|
lspsnat |
|- ( ( ( U e. LVec /\ T e. S /\ X e. V ) /\ T C_ ( N ` { X } ) ) -> ( T = ( N ` { X } ) \/ T = { ( 0g ` U ) } ) ) |
| 36 |
31 32 33 34 35
|
syl31anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) /\ T e. S ) -> ( T = ( N ` { X } ) \/ T = { ( 0g ` U ) } ) ) |
| 37 |
11 29 36
|
mpjaodan |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) /\ T e. S ) -> T e. ran I ) |
| 38 |
37
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) -> ( T e. S -> T e. ran I ) ) |
| 39 |
1 2 6 4
|
dihsslss |
|- ( ( K e. HL /\ W e. H ) -> ran I C_ S ) |
| 40 |
39
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) -> ran I C_ S ) |
| 41 |
40
|
sseld |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) -> ( T e. ran I -> T e. S ) ) |
| 42 |
38 41
|
impbid |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ T C_ ( N ` { X } ) ) -> ( T e. S <-> T e. ran I ) ) |