Step |
Hyp |
Ref |
Expression |
1 |
|
dih1dor0.h |
|
2 |
|
dih1dor0.u |
|
3 |
|
dihldor0.v |
|
4 |
|
dih1dor0.s |
|
5 |
|
dih1dor0.n |
|
6 |
|
dih1dor0.i |
|
7 |
|
simpr |
|
8 |
1 2 3 5 6
|
dihlsprn |
|
9 |
8
|
3adant3 |
|
10 |
9
|
ad2antrr |
|
11 |
7 10
|
eqeltrd |
|
12 |
|
simpr |
|
13 |
|
simpll1 |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
14 1 6 2 15
|
dih0 |
|
17 |
13 16
|
syl |
|
18 |
12 17
|
eqtr4d |
|
19 |
|
eqid |
|
20 |
19 1 6
|
dihfn |
|
21 |
13 20
|
syl |
|
22 |
|
simp1l |
|
23 |
22
|
ad2antrr |
|
24 |
|
hlop |
|
25 |
19 14
|
op0cl |
|
26 |
23 24 25
|
3syl |
|
27 |
|
fnfvelrn |
|
28 |
21 26 27
|
syl2anc |
|
29 |
18 28
|
eqeltrd |
|
30 |
|
simpl1 |
|
31 |
1 2 30
|
dvhlvec |
|
32 |
|
simpr |
|
33 |
|
simpl2 |
|
34 |
|
simpl3 |
|
35 |
3 15 4 5
|
lspsnat |
|
36 |
31 32 33 34 35
|
syl31anc |
|
37 |
11 29 36
|
mpjaodan |
|
38 |
37
|
ex |
|
39 |
1 2 6 4
|
dihsslss |
|
40 |
39
|
3ad2ant1 |
|
41 |
40
|
sseld |
|
42 |
38 41
|
impbid |
|