| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dih1dor0.h |
|
| 2 |
|
dih1dor0.u |
|
| 3 |
|
dihldor0.v |
|
| 4 |
|
dih1dor0.s |
|
| 5 |
|
dih1dor0.n |
|
| 6 |
|
dih1dor0.i |
|
| 7 |
|
simpr |
|
| 8 |
1 2 3 5 6
|
dihlsprn |
|
| 9 |
8
|
3adant3 |
|
| 10 |
9
|
ad2antrr |
|
| 11 |
7 10
|
eqeltrd |
|
| 12 |
|
simpr |
|
| 13 |
|
simpll1 |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
14 1 6 2 15
|
dih0 |
|
| 17 |
13 16
|
syl |
|
| 18 |
12 17
|
eqtr4d |
|
| 19 |
|
eqid |
|
| 20 |
19 1 6
|
dihfn |
|
| 21 |
13 20
|
syl |
|
| 22 |
|
simp1l |
|
| 23 |
22
|
ad2antrr |
|
| 24 |
|
hlop |
|
| 25 |
19 14
|
op0cl |
|
| 26 |
23 24 25
|
3syl |
|
| 27 |
|
fnfvelrn |
|
| 28 |
21 26 27
|
syl2anc |
|
| 29 |
18 28
|
eqeltrd |
|
| 30 |
|
simpl1 |
|
| 31 |
1 2 30
|
dvhlvec |
|
| 32 |
|
simpr |
|
| 33 |
|
simpl2 |
|
| 34 |
|
simpl3 |
|
| 35 |
3 15 4 5
|
lspsnat |
|
| 36 |
31 32 33 34 35
|
syl31anc |
|
| 37 |
11 29 36
|
mpjaodan |
|
| 38 |
37
|
ex |
|
| 39 |
1 2 6 4
|
dihsslss |
|
| 40 |
39
|
3ad2ant1 |
|
| 41 |
40
|
sseld |
|
| 42 |
38 41
|
impbid |
|