Metamath Proof Explorer


Theorem dihlspsnssN

Description: A subspace included in a 1-dim subspace belongs to the range of isomorphism H. (Contributed by NM, 26-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dih1dor0.h H = LHyp K
dih1dor0.u U = DVecH K W
dihldor0.v V = Base U
dih1dor0.s S = LSubSp U
dih1dor0.n N = LSpan U
dih1dor0.i I = DIsoH K W
Assertion dihlspsnssN K HL W H X V T N X T S T ran I

Proof

Step Hyp Ref Expression
1 dih1dor0.h H = LHyp K
2 dih1dor0.u U = DVecH K W
3 dihldor0.v V = Base U
4 dih1dor0.s S = LSubSp U
5 dih1dor0.n N = LSpan U
6 dih1dor0.i I = DIsoH K W
7 simpr K HL W H X V T N X T S T = N X T = N X
8 1 2 3 5 6 dihlsprn K HL W H X V N X ran I
9 8 3adant3 K HL W H X V T N X N X ran I
10 9 ad2antrr K HL W H X V T N X T S T = N X N X ran I
11 7 10 eqeltrd K HL W H X V T N X T S T = N X T ran I
12 simpr K HL W H X V T N X T S T = 0 U T = 0 U
13 simpll1 K HL W H X V T N X T S T = 0 U K HL W H
14 eqid 0. K = 0. K
15 eqid 0 U = 0 U
16 14 1 6 2 15 dih0 K HL W H I 0. K = 0 U
17 13 16 syl K HL W H X V T N X T S T = 0 U I 0. K = 0 U
18 12 17 eqtr4d K HL W H X V T N X T S T = 0 U T = I 0. K
19 eqid Base K = Base K
20 19 1 6 dihfn K HL W H I Fn Base K
21 13 20 syl K HL W H X V T N X T S T = 0 U I Fn Base K
22 simp1l K HL W H X V T N X K HL
23 22 ad2antrr K HL W H X V T N X T S T = 0 U K HL
24 hlop K HL K OP
25 19 14 op0cl K OP 0. K Base K
26 23 24 25 3syl K HL W H X V T N X T S T = 0 U 0. K Base K
27 fnfvelrn I Fn Base K 0. K Base K I 0. K ran I
28 21 26 27 syl2anc K HL W H X V T N X T S T = 0 U I 0. K ran I
29 18 28 eqeltrd K HL W H X V T N X T S T = 0 U T ran I
30 simpl1 K HL W H X V T N X T S K HL W H
31 1 2 30 dvhlvec K HL W H X V T N X T S U LVec
32 simpr K HL W H X V T N X T S T S
33 simpl2 K HL W H X V T N X T S X V
34 simpl3 K HL W H X V T N X T S T N X
35 3 15 4 5 lspsnat U LVec T S X V T N X T = N X T = 0 U
36 31 32 33 34 35 syl31anc K HL W H X V T N X T S T = N X T = 0 U
37 11 29 36 mpjaodan K HL W H X V T N X T S T ran I
38 37 ex K HL W H X V T N X T S T ran I
39 1 2 6 4 dihsslss K HL W H ran I S
40 39 3ad2ant1 K HL W H X V T N X ran I S
41 40 sseld K HL W H X V T N X T ran I T S
42 38 41 impbid K HL W H X V T N X T S T ran I