| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihlspsnat.a |
|
| 2 |
|
dihlspsnat.h |
|
| 3 |
|
dihlspsnat.u |
|
| 4 |
|
dihlspsnat.v |
|
| 5 |
|
dihlspsnat.o |
|
| 6 |
|
dihlspsnat.n |
|
| 7 |
|
dihlspsnat.i |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
8 2 7 3 9
|
dihf11 |
|
| 11 |
10
|
3ad2ant1 |
|
| 12 |
|
f1f1orn |
|
| 13 |
11 12
|
syl |
|
| 14 |
2 3 4 6 7
|
dihlsprn |
|
| 15 |
14
|
3adant3 |
|
| 16 |
|
f1ocnvdm |
|
| 17 |
13 15 16
|
syl2anc |
|
| 18 |
|
fveq2 |
|
| 19 |
2 7
|
dihcnvid2 |
|
| 20 |
14 19
|
syldan |
|
| 21 |
|
eqid |
|
| 22 |
21 2 7 3 5
|
dih0 |
|
| 23 |
22
|
adantr |
|
| 24 |
20 23
|
eqeq12d |
|
| 25 |
|
id |
|
| 26 |
2 3 25
|
dvhlmod |
|
| 27 |
4 5 6
|
lspsneq0 |
|
| 28 |
26 27
|
sylan |
|
| 29 |
24 28
|
bitrd |
|
| 30 |
18 29
|
imbitrid |
|
| 31 |
30
|
necon3d |
|
| 32 |
31
|
3impia |
|
| 33 |
|
simpll1 |
|
| 34 |
2 3 33
|
dvhlvec |
|
| 35 |
|
simplr |
|
| 36 |
8 2 7 3 9
|
dihlss |
|
| 37 |
33 35 36
|
syl2anc |
|
| 38 |
|
simpll2 |
|
| 39 |
|
simpr |
|
| 40 |
4 5 9 6
|
lspsnat |
|
| 41 |
34 37 38 39 40
|
syl31anc |
|
| 42 |
41
|
ex |
|
| 43 |
|
simp1 |
|
| 44 |
43 15 19
|
syl2anc |
|
| 45 |
44
|
adantr |
|
| 46 |
45
|
sseq2d |
|
| 47 |
|
simpl1 |
|
| 48 |
|
simpr |
|
| 49 |
17
|
adantr |
|
| 50 |
|
eqid |
|
| 51 |
8 50 2 7
|
dihord |
|
| 52 |
47 48 49 51
|
syl3anc |
|
| 53 |
46 52
|
bitr3d |
|
| 54 |
45
|
eqeq2d |
|
| 55 |
8 2 7
|
dih11 |
|
| 56 |
47 48 49 55
|
syl3anc |
|
| 57 |
54 56
|
bitr3d |
|
| 58 |
47 22
|
syl |
|
| 59 |
58
|
eqeq2d |
|
| 60 |
|
simpl1l |
|
| 61 |
|
hlop |
|
| 62 |
8 21
|
op0cl |
|
| 63 |
60 61 62
|
3syl |
|
| 64 |
8 2 7
|
dih11 |
|
| 65 |
47 48 63 64
|
syl3anc |
|
| 66 |
59 65
|
bitr3d |
|
| 67 |
57 66
|
orbi12d |
|
| 68 |
42 53 67
|
3imtr3d |
|
| 69 |
68
|
ralrimiva |
|
| 70 |
|
simp1l |
|
| 71 |
|
hlatl |
|
| 72 |
8 50 21 1
|
isat3 |
|
| 73 |
70 71 72
|
3syl |
|
| 74 |
17 32 69 73
|
mpbir3and |
|