Metamath Proof Explorer


Theorem dihlspsnat

Description: The inverse isomorphism H of the span of a singleton is a Hilbert lattice atom. (Contributed by NM, 27-Apr-2014)

Ref Expression
Hypotheses dihlspsnat.a A=AtomsK
dihlspsnat.h H=LHypK
dihlspsnat.u U=DVecHKW
dihlspsnat.v V=BaseU
dihlspsnat.o 0˙=0U
dihlspsnat.n N=LSpanU
dihlspsnat.i I=DIsoHKW
Assertion dihlspsnat KHLWHXVX0˙I-1NXA

Proof

Step Hyp Ref Expression
1 dihlspsnat.a A=AtomsK
2 dihlspsnat.h H=LHypK
3 dihlspsnat.u U=DVecHKW
4 dihlspsnat.v V=BaseU
5 dihlspsnat.o 0˙=0U
6 dihlspsnat.n N=LSpanU
7 dihlspsnat.i I=DIsoHKW
8 eqid BaseK=BaseK
9 eqid LSubSpU=LSubSpU
10 8 2 7 3 9 dihf11 KHLWHI:BaseK1-1LSubSpU
11 10 3ad2ant1 KHLWHXVX0˙I:BaseK1-1LSubSpU
12 f1f1orn I:BaseK1-1LSubSpUI:BaseK1-1 ontoranI
13 11 12 syl KHLWHXVX0˙I:BaseK1-1 ontoranI
14 2 3 4 6 7 dihlsprn KHLWHXVNXranI
15 14 3adant3 KHLWHXVX0˙NXranI
16 f1ocnvdm I:BaseK1-1 ontoranINXranII-1NXBaseK
17 13 15 16 syl2anc KHLWHXVX0˙I-1NXBaseK
18 fveq2 I-1NX=0.KII-1NX=I0.K
19 2 7 dihcnvid2 KHLWHNXranIII-1NX=NX
20 14 19 syldan KHLWHXVII-1NX=NX
21 eqid 0.K=0.K
22 21 2 7 3 5 dih0 KHLWHI0.K=0˙
23 22 adantr KHLWHXVI0.K=0˙
24 20 23 eqeq12d KHLWHXVII-1NX=I0.KNX=0˙
25 id KHLWHKHLWH
26 2 3 25 dvhlmod KHLWHULMod
27 4 5 6 lspsneq0 ULModXVNX=0˙X=0˙
28 26 27 sylan KHLWHXVNX=0˙X=0˙
29 24 28 bitrd KHLWHXVII-1NX=I0.KX=0˙
30 18 29 imbitrid KHLWHXVI-1NX=0.KX=0˙
31 30 necon3d KHLWHXVX0˙I-1NX0.K
32 31 3impia KHLWHXVX0˙I-1NX0.K
33 simpll1 KHLWHXVX0˙xBaseKIxNXKHLWH
34 2 3 33 dvhlvec KHLWHXVX0˙xBaseKIxNXULVec
35 simplr KHLWHXVX0˙xBaseKIxNXxBaseK
36 8 2 7 3 9 dihlss KHLWHxBaseKIxLSubSpU
37 33 35 36 syl2anc KHLWHXVX0˙xBaseKIxNXIxLSubSpU
38 simpll2 KHLWHXVX0˙xBaseKIxNXXV
39 simpr KHLWHXVX0˙xBaseKIxNXIxNX
40 4 5 9 6 lspsnat ULVecIxLSubSpUXVIxNXIx=NXIx=0˙
41 34 37 38 39 40 syl31anc KHLWHXVX0˙xBaseKIxNXIx=NXIx=0˙
42 41 ex KHLWHXVX0˙xBaseKIxNXIx=NXIx=0˙
43 simp1 KHLWHXVX0˙KHLWH
44 43 15 19 syl2anc KHLWHXVX0˙II-1NX=NX
45 44 adantr KHLWHXVX0˙xBaseKII-1NX=NX
46 45 sseq2d KHLWHXVX0˙xBaseKIxII-1NXIxNX
47 simpl1 KHLWHXVX0˙xBaseKKHLWH
48 simpr KHLWHXVX0˙xBaseKxBaseK
49 17 adantr KHLWHXVX0˙xBaseKI-1NXBaseK
50 eqid K=K
51 8 50 2 7 dihord KHLWHxBaseKI-1NXBaseKIxII-1NXxKI-1NX
52 47 48 49 51 syl3anc KHLWHXVX0˙xBaseKIxII-1NXxKI-1NX
53 46 52 bitr3d KHLWHXVX0˙xBaseKIxNXxKI-1NX
54 45 eqeq2d KHLWHXVX0˙xBaseKIx=II-1NXIx=NX
55 8 2 7 dih11 KHLWHxBaseKI-1NXBaseKIx=II-1NXx=I-1NX
56 47 48 49 55 syl3anc KHLWHXVX0˙xBaseKIx=II-1NXx=I-1NX
57 54 56 bitr3d KHLWHXVX0˙xBaseKIx=NXx=I-1NX
58 47 22 syl KHLWHXVX0˙xBaseKI0.K=0˙
59 58 eqeq2d KHLWHXVX0˙xBaseKIx=I0.KIx=0˙
60 simpl1l KHLWHXVX0˙xBaseKKHL
61 hlop KHLKOP
62 8 21 op0cl KOP0.KBaseK
63 60 61 62 3syl KHLWHXVX0˙xBaseK0.KBaseK
64 8 2 7 dih11 KHLWHxBaseK0.KBaseKIx=I0.Kx=0.K
65 47 48 63 64 syl3anc KHLWHXVX0˙xBaseKIx=I0.Kx=0.K
66 59 65 bitr3d KHLWHXVX0˙xBaseKIx=0˙x=0.K
67 57 66 orbi12d KHLWHXVX0˙xBaseKIx=NXIx=0˙x=I-1NXx=0.K
68 42 53 67 3imtr3d KHLWHXVX0˙xBaseKxKI-1NXx=I-1NXx=0.K
69 68 ralrimiva KHLWHXVX0˙xBaseKxKI-1NXx=I-1NXx=0.K
70 simp1l KHLWHXVX0˙KHL
71 hlatl KHLKAtLat
72 8 50 21 1 isat3 KAtLatI-1NXAI-1NXBaseKI-1NX0.KxBaseKxKI-1NXx=I-1NXx=0.K
73 70 71 72 3syl KHLWHXVX0˙I-1NXAI-1NXBaseKI-1NX0.KxBaseKxKI-1NXx=I-1NXx=0.K
74 17 32 69 73 mpbir3and KHLWHXVX0˙I-1NXA