Metamath Proof Explorer


Theorem dihatlat

Description: The isomorphism H of an atom is a 1-dim subspace. (Contributed by NM, 28-Apr-2014)

Ref Expression
Hypotheses dihatlat.a A = Atoms K
dihatlat.h H = LHyp K
dihatlat.u U = DVecH K W
dihatlat.i I = DIsoH K W
dihatlat.l L = LSAtoms U
Assertion dihatlat K HL W H Q A I Q L

Proof

Step Hyp Ref Expression
1 dihatlat.a A = Atoms K
2 dihatlat.h H = LHyp K
3 dihatlat.u U = DVecH K W
4 dihatlat.i I = DIsoH K W
5 dihatlat.l L = LSAtoms U
6 eqid Base K = Base K
7 eqid K = K
8 eqid LTrn K W = LTrn K W
9 eqid f LTrn K W I Base K = f LTrn K W I Base K
10 eqid LSpan U = LSpan U
11 6 7 1 2 8 9 3 4 10 dih1dimb2 K HL W H Q A Q K W g LTrn K W g I Base K I Q = LSpan U g f LTrn K W I Base K
12 11 anassrs K HL W H Q A Q K W g LTrn K W g I Base K I Q = LSpan U g f LTrn K W I Base K
13 simp3rr K HL W H Q A Q K W g LTrn K W g I Base K I Q = LSpan U g f LTrn K W I Base K I Q = LSpan U g f LTrn K W I Base K
14 simp1l K HL W H Q A Q K W g LTrn K W g I Base K I Q = LSpan U g f LTrn K W I Base K K HL W H
15 2 3 14 dvhlmod K HL W H Q A Q K W g LTrn K W g I Base K I Q = LSpan U g f LTrn K W I Base K U LMod
16 simp3l K HL W H Q A Q K W g LTrn K W g I Base K I Q = LSpan U g f LTrn K W I Base K g LTrn K W
17 eqid TEndo K W = TEndo K W
18 6 2 8 17 9 tendo0cl K HL W H f LTrn K W I Base K TEndo K W
19 14 18 syl K HL W H Q A Q K W g LTrn K W g I Base K I Q = LSpan U g f LTrn K W I Base K f LTrn K W I Base K TEndo K W
20 eqid Base U = Base U
21 2 8 17 3 20 dvhelvbasei K HL W H g LTrn K W f LTrn K W I Base K TEndo K W g f LTrn K W I Base K Base U
22 14 16 19 21 syl12anc K HL W H Q A Q K W g LTrn K W g I Base K I Q = LSpan U g f LTrn K W I Base K g f LTrn K W I Base K Base U
23 simp3rl K HL W H Q A Q K W g LTrn K W g I Base K I Q = LSpan U g f LTrn K W I Base K g I Base K
24 23 neneqd K HL W H Q A Q K W g LTrn K W g I Base K I Q = LSpan U g f LTrn K W I Base K ¬ g = I Base K
25 24 intnanrd K HL W H Q A Q K W g LTrn K W g I Base K I Q = LSpan U g f LTrn K W I Base K ¬ g = I Base K f LTrn K W I Base K = f LTrn K W I Base K
26 vex g V
27 fvex LTrn K W V
28 27 mptex f LTrn K W I Base K V
29 26 28 opth g f LTrn K W I Base K = I Base K f LTrn K W I Base K g = I Base K f LTrn K W I Base K = f LTrn K W I Base K
30 29 necon3abii g f LTrn K W I Base K I Base K f LTrn K W I Base K ¬ g = I Base K f LTrn K W I Base K = f LTrn K W I Base K
31 25 30 sylibr K HL W H Q A Q K W g LTrn K W g I Base K I Q = LSpan U g f LTrn K W I Base K g f LTrn K W I Base K I Base K f LTrn K W I Base K
32 eqid 0 U = 0 U
33 6 2 8 3 32 9 dvh0g K HL W H 0 U = I Base K f LTrn K W I Base K
34 14 33 syl K HL W H Q A Q K W g LTrn K W g I Base K I Q = LSpan U g f LTrn K W I Base K 0 U = I Base K f LTrn K W I Base K
35 31 34 neeqtrrd K HL W H Q A Q K W g LTrn K W g I Base K I Q = LSpan U g f LTrn K W I Base K g f LTrn K W I Base K 0 U
36 20 10 32 5 lsatlspsn2 U LMod g f LTrn K W I Base K Base U g f LTrn K W I Base K 0 U LSpan U g f LTrn K W I Base K L
37 15 22 35 36 syl3anc K HL W H Q A Q K W g LTrn K W g I Base K I Q = LSpan U g f LTrn K W I Base K LSpan U g f LTrn K W I Base K L
38 13 37 eqeltrd K HL W H Q A Q K W g LTrn K W g I Base K I Q = LSpan U g f LTrn K W I Base K I Q L
39 38 3expa K HL W H Q A Q K W g LTrn K W g I Base K I Q = LSpan U g f LTrn K W I Base K I Q L
40 12 39 rexlimddv K HL W H Q A Q K W I Q L
41 eqid oc K W = oc K W
42 eqid ι f LTrn K W | f oc K W = Q = ι f LTrn K W | f oc K W = Q
43 7 1 2 41 8 4 3 10 42 dih1dimc K HL W H Q A ¬ Q K W I Q = LSpan U ι f LTrn K W | f oc K W = Q I LTrn K W
44 43 anassrs K HL W H Q A ¬ Q K W I Q = LSpan U ι f LTrn K W | f oc K W = Q I LTrn K W
45 simpll K HL W H Q A ¬ Q K W K HL W H
46 2 3 45 dvhlmod K HL W H Q A ¬ Q K W U LMod
47 eqid oc K = oc K
48 7 47 1 2 lhpocnel K HL W H oc K W A ¬ oc K W K W
49 48 ad2antrr K HL W H Q A ¬ Q K W oc K W A ¬ oc K W K W
50 simplr K HL W H Q A ¬ Q K W Q A
51 simpr K HL W H Q A ¬ Q K W ¬ Q K W
52 7 1 2 8 42 ltrniotacl K HL W H oc K W A ¬ oc K W K W Q A ¬ Q K W ι f LTrn K W | f oc K W = Q LTrn K W
53 45 49 50 51 52 syl112anc K HL W H Q A ¬ Q K W ι f LTrn K W | f oc K W = Q LTrn K W
54 2 8 17 tendoidcl K HL W H I LTrn K W TEndo K W
55 54 ad2antrr K HL W H Q A ¬ Q K W I LTrn K W TEndo K W
56 2 8 17 3 20 dvhelvbasei K HL W H ι f LTrn K W | f oc K W = Q LTrn K W I LTrn K W TEndo K W ι f LTrn K W | f oc K W = Q I LTrn K W Base U
57 45 53 55 56 syl12anc K HL W H Q A ¬ Q K W ι f LTrn K W | f oc K W = Q I LTrn K W Base U
58 6 2 8 17 9 tendo1ne0 K HL W H I LTrn K W f LTrn K W I Base K
59 58 ad2antrr K HL W H Q A ¬ Q K W I LTrn K W f LTrn K W I Base K
60 59 neneqd K HL W H Q A ¬ Q K W ¬ I LTrn K W = f LTrn K W I Base K
61 60 intnand K HL W H Q A ¬ Q K W ¬ ι f LTrn K W | f oc K W = Q = I Base K I LTrn K W = f LTrn K W I Base K
62 riotaex ι f LTrn K W | f oc K W = Q V
63 resiexg LTrn K W V I LTrn K W V
64 27 63 ax-mp I LTrn K W V
65 62 64 opth ι f LTrn K W | f oc K W = Q I LTrn K W = I Base K f LTrn K W I Base K ι f LTrn K W | f oc K W = Q = I Base K I LTrn K W = f LTrn K W I Base K
66 65 necon3abii ι f LTrn K W | f oc K W = Q I LTrn K W I Base K f LTrn K W I Base K ¬ ι f LTrn K W | f oc K W = Q = I Base K I LTrn K W = f LTrn K W I Base K
67 61 66 sylibr K HL W H Q A ¬ Q K W ι f LTrn K W | f oc K W = Q I LTrn K W I Base K f LTrn K W I Base K
68 33 ad2antrr K HL W H Q A ¬ Q K W 0 U = I Base K f LTrn K W I Base K
69 67 68 neeqtrrd K HL W H Q A ¬ Q K W ι f LTrn K W | f oc K W = Q I LTrn K W 0 U
70 20 10 32 5 lsatlspsn2 U LMod ι f LTrn K W | f oc K W = Q I LTrn K W Base U ι f LTrn K W | f oc K W = Q I LTrn K W 0 U LSpan U ι f LTrn K W | f oc K W = Q I LTrn K W L
71 46 57 69 70 syl3anc K HL W H Q A ¬ Q K W LSpan U ι f LTrn K W | f oc K W = Q I LTrn K W L
72 44 71 eqeltrd K HL W H Q A ¬ Q K W I Q L
73 40 72 pm2.61dan K HL W H Q A I Q L