Step |
Hyp |
Ref |
Expression |
1 |
|
dihatlat.a |
|
2 |
|
dihatlat.h |
|
3 |
|
dihatlat.u |
|
4 |
|
dihatlat.i |
|
5 |
|
dihatlat.l |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
6 7 1 2 8 9 3 4 10
|
dih1dimb2 |
|
12 |
11
|
anassrs |
|
13 |
|
simp3rr |
|
14 |
|
simp1l |
|
15 |
2 3 14
|
dvhlmod |
|
16 |
|
simp3l |
|
17 |
|
eqid |
|
18 |
6 2 8 17 9
|
tendo0cl |
|
19 |
14 18
|
syl |
|
20 |
|
eqid |
|
21 |
2 8 17 3 20
|
dvhelvbasei |
|
22 |
14 16 19 21
|
syl12anc |
|
23 |
|
simp3rl |
|
24 |
23
|
neneqd |
|
25 |
24
|
intnanrd |
|
26 |
|
vex |
|
27 |
|
fvex |
|
28 |
27
|
mptex |
|
29 |
26 28
|
opth |
|
30 |
29
|
necon3abii |
|
31 |
25 30
|
sylibr |
|
32 |
|
eqid |
|
33 |
6 2 8 3 32 9
|
dvh0g |
|
34 |
14 33
|
syl |
|
35 |
31 34
|
neeqtrrd |
|
36 |
20 10 32 5
|
lsatlspsn2 |
|
37 |
15 22 35 36
|
syl3anc |
|
38 |
13 37
|
eqeltrd |
|
39 |
38
|
3expa |
|
40 |
12 39
|
rexlimddv |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
7 1 2 41 8 4 3 10 42
|
dih1dimc |
|
44 |
43
|
anassrs |
|
45 |
|
simpll |
|
46 |
2 3 45
|
dvhlmod |
|
47 |
|
eqid |
|
48 |
7 47 1 2
|
lhpocnel |
|
49 |
48
|
ad2antrr |
|
50 |
|
simplr |
|
51 |
|
simpr |
|
52 |
7 1 2 8 42
|
ltrniotacl |
|
53 |
45 49 50 51 52
|
syl112anc |
|
54 |
2 8 17
|
tendoidcl |
|
55 |
54
|
ad2antrr |
|
56 |
2 8 17 3 20
|
dvhelvbasei |
|
57 |
45 53 55 56
|
syl12anc |
|
58 |
6 2 8 17 9
|
tendo1ne0 |
|
59 |
58
|
ad2antrr |
|
60 |
59
|
neneqd |
|
61 |
60
|
intnand |
|
62 |
|
riotaex |
|
63 |
|
resiexg |
|
64 |
27 63
|
ax-mp |
|
65 |
62 64
|
opth |
|
66 |
65
|
necon3abii |
|
67 |
61 66
|
sylibr |
|
68 |
33
|
ad2antrr |
|
69 |
67 68
|
neeqtrrd |
|
70 |
20 10 32 5
|
lsatlspsn2 |
|
71 |
46 57 69 70
|
syl3anc |
|
72 |
44 71
|
eqeltrd |
|
73 |
40 72
|
pm2.61dan |
|