| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihatlat.a |
|
| 2 |
|
dihatlat.h |
|
| 3 |
|
dihatlat.u |
|
| 4 |
|
dihatlat.i |
|
| 5 |
|
dihatlat.l |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
6 7 1 2 8 9 3 4 10
|
dih1dimb2 |
|
| 12 |
11
|
anassrs |
|
| 13 |
|
simp3rr |
|
| 14 |
|
simp1l |
|
| 15 |
2 3 14
|
dvhlmod |
|
| 16 |
|
simp3l |
|
| 17 |
|
eqid |
|
| 18 |
6 2 8 17 9
|
tendo0cl |
|
| 19 |
14 18
|
syl |
|
| 20 |
|
eqid |
|
| 21 |
2 8 17 3 20
|
dvhelvbasei |
|
| 22 |
14 16 19 21
|
syl12anc |
|
| 23 |
|
simp3rl |
|
| 24 |
23
|
neneqd |
|
| 25 |
24
|
intnanrd |
|
| 26 |
|
vex |
|
| 27 |
|
fvex |
|
| 28 |
27
|
mptex |
|
| 29 |
26 28
|
opth |
|
| 30 |
29
|
necon3abii |
|
| 31 |
25 30
|
sylibr |
|
| 32 |
|
eqid |
|
| 33 |
6 2 8 3 32 9
|
dvh0g |
|
| 34 |
14 33
|
syl |
|
| 35 |
31 34
|
neeqtrrd |
|
| 36 |
20 10 32 5
|
lsatlspsn2 |
|
| 37 |
15 22 35 36
|
syl3anc |
|
| 38 |
13 37
|
eqeltrd |
|
| 39 |
38
|
3expa |
|
| 40 |
12 39
|
rexlimddv |
|
| 41 |
|
eqid |
|
| 42 |
|
eqid |
|
| 43 |
7 1 2 41 8 4 3 10 42
|
dih1dimc |
|
| 44 |
43
|
anassrs |
|
| 45 |
|
simpll |
|
| 46 |
2 3 45
|
dvhlmod |
|
| 47 |
|
eqid |
|
| 48 |
7 47 1 2
|
lhpocnel |
|
| 49 |
48
|
ad2antrr |
|
| 50 |
|
simplr |
|
| 51 |
|
simpr |
|
| 52 |
7 1 2 8 42
|
ltrniotacl |
|
| 53 |
45 49 50 51 52
|
syl112anc |
|
| 54 |
2 8 17
|
tendoidcl |
|
| 55 |
54
|
ad2antrr |
|
| 56 |
2 8 17 3 20
|
dvhelvbasei |
|
| 57 |
45 53 55 56
|
syl12anc |
|
| 58 |
6 2 8 17 9
|
tendo1ne0 |
|
| 59 |
58
|
ad2antrr |
|
| 60 |
59
|
neneqd |
|
| 61 |
60
|
intnand |
|
| 62 |
|
riotaex |
|
| 63 |
|
resiexg |
|
| 64 |
27 63
|
ax-mp |
|
| 65 |
62 64
|
opth |
|
| 66 |
65
|
necon3abii |
|
| 67 |
61 66
|
sylibr |
|
| 68 |
33
|
ad2antrr |
|
| 69 |
67 68
|
neeqtrrd |
|
| 70 |
20 10 32 5
|
lsatlspsn2 |
|
| 71 |
46 57 69 70
|
syl3anc |
|
| 72 |
44 71
|
eqeltrd |
|
| 73 |
40 72
|
pm2.61dan |
|