Step |
Hyp |
Ref |
Expression |
1 |
|
dihatlat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
dihatlat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dihatlat.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dihatlat.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dihatlat.l |
⊢ 𝐿 = ( LSAtoms ‘ 𝑈 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
7 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
8 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
eqid |
⊢ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) |
10 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
11 |
6 7 1 2 8 9 3 4 10
|
dih1dimb2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ∃ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ) ) |
12 |
11
|
anassrs |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ∃ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ) ) |
13 |
|
simp3rr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ) ) ) → ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ) |
14 |
|
simp1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
15 |
2 3 14
|
dvhlmod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ) ) ) → 𝑈 ∈ LMod ) |
16 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ) ) ) → 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
17 |
|
eqid |
⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
18 |
6 2 8 17 9
|
tendo0cl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
19 |
14 18
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ) ) ) → ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
21 |
2 8 17 3 20
|
dvhelvbasei |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 ∈ ( Base ‘ 𝑈 ) ) |
22 |
14 16 19 21
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ) ) ) → 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 ∈ ( Base ‘ 𝑈 ) ) |
23 |
|
simp3rl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ) ) ) → 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) |
24 |
23
|
neneqd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ) ) ) → ¬ 𝑔 = ( I ↾ ( Base ‘ 𝐾 ) ) ) |
25 |
24
|
intnanrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ) ) ) → ¬ ( 𝑔 = ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) ) |
26 |
|
vex |
⊢ 𝑔 ∈ V |
27 |
|
fvex |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∈ V |
28 |
27
|
mptex |
⊢ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∈ V |
29 |
26 28
|
opth |
⊢ ( 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 ↔ ( 𝑔 = ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) ) |
30 |
29
|
necon3abii |
⊢ ( 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 ≠ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 ↔ ¬ ( 𝑔 = ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) ) |
31 |
25 30
|
sylibr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ) ) ) → 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 ≠ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 ) |
32 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
33 |
6 2 8 3 32 9
|
dvh0g |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 0g ‘ 𝑈 ) = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 ) |
34 |
14 33
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ) ) ) → ( 0g ‘ 𝑈 ) = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 ) |
35 |
31 34
|
neeqtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ) ) ) → 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 ≠ ( 0g ‘ 𝑈 ) ) |
36 |
20 10 32 5
|
lsatlspsn2 |
⊢ ( ( 𝑈 ∈ LMod ∧ 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 ∈ ( Base ‘ 𝑈 ) ∧ 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 ≠ ( 0g ‘ 𝑈 ) ) → ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ∈ 𝐿 ) |
37 |
15 22 35 36
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ) ) ) → ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ∈ 𝐿 ) |
38 |
13 37
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ) ) ) → ( 𝐼 ‘ 𝑄 ) ∈ 𝐿 ) |
39 |
38
|
3expa |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 } ) ) ) ) → ( 𝐼 ‘ 𝑄 ) ∈ 𝐿 ) |
40 |
12 39
|
rexlimddv |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝐼 ‘ 𝑄 ) ∈ 𝐿 ) |
41 |
|
eqid |
⊢ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
42 |
|
eqid |
⊢ ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) = ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) |
43 |
7 1 2 41 8 4 3 10 42
|
dih1dimc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } ) ) |
44 |
43
|
anassrs |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝐼 ‘ 𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } ) ) |
45 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
46 |
2 3 45
|
dvhlmod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → 𝑈 ∈ LMod ) |
47 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
48 |
7 47 1 2
|
lhpocnel |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) ) |
50 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → 𝑄 ∈ 𝐴 ) |
51 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) |
52 |
7 1 2 8 42
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
53 |
45 49 50 51 52
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
54 |
2 8 17
|
tendoidcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
55 |
54
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
56 |
2 8 17 3 20
|
dvhelvbasei |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ∈ ( Base ‘ 𝑈 ) ) |
57 |
45 53 55 56
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ∈ ( Base ‘ 𝑈 ) ) |
58 |
6 2 8 17 9
|
tendo1ne0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ≠ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) |
59 |
58
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ≠ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) |
60 |
59
|
neneqd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ¬ ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) |
61 |
60
|
intnand |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ¬ ( ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) ) |
62 |
|
riotaex |
⊢ ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ∈ V |
63 |
|
resiexg |
⊢ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∈ V → ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ V ) |
64 |
27 63
|
ax-mp |
⊢ ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ V |
65 |
62 64
|
opth |
⊢ ( 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 ↔ ( ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) ) |
66 |
65
|
necon3abii |
⊢ ( 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ≠ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 ↔ ¬ ( ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) ) |
67 |
61 66
|
sylibr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ≠ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 ) |
68 |
33
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( 0g ‘ 𝑈 ) = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) 〉 ) |
69 |
67 68
|
neeqtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ≠ ( 0g ‘ 𝑈 ) ) |
70 |
20 10 32 5
|
lsatlspsn2 |
⊢ ( ( 𝑈 ∈ LMod ∧ 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ∈ ( Base ‘ 𝑈 ) ∧ 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ≠ ( 0g ‘ 𝑈 ) ) → ( ( LSpan ‘ 𝑈 ) ‘ { 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } ) ∈ 𝐿 ) |
71 |
46 57 69 70
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( ( LSpan ‘ 𝑈 ) ‘ { 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } ) ∈ 𝐿 ) |
72 |
44 71
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝐼 ‘ 𝑄 ) ∈ 𝐿 ) |
73 |
40 72
|
pm2.61dan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) → ( 𝐼 ‘ 𝑄 ) ∈ 𝐿 ) |