Metamath Proof Explorer


Theorem dihatlat

Description: The isomorphism H of an atom is a 1-dim subspace. (Contributed by NM, 28-Apr-2014)

Ref Expression
Hypotheses dihatlat.a 𝐴 = ( Atoms ‘ 𝐾 )
dihatlat.h 𝐻 = ( LHyp ‘ 𝐾 )
dihatlat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihatlat.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihatlat.l 𝐿 = ( LSAtoms ‘ 𝑈 )
Assertion dihatlat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) → ( 𝐼𝑄 ) ∈ 𝐿 )

Proof

Step Hyp Ref Expression
1 dihatlat.a 𝐴 = ( Atoms ‘ 𝐾 )
2 dihatlat.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dihatlat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dihatlat.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
5 dihatlat.l 𝐿 = ( LSAtoms ‘ 𝑈 )
6 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
7 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
8 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
9 eqid ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) )
10 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
11 6 7 1 2 8 9 3 4 10 dih1dimb2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ∃ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) ) )
12 11 anassrs ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ∃ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) ) )
13 simp3rr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) ) ) ) → ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) )
14 simp1l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
15 2 3 14 dvhlmod ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) ) ) ) → 𝑈 ∈ LMod )
16 simp3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) ) ) ) → 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
17 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
18 6 2 8 17 9 tendo0cl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
19 14 18 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) ) ) ) → ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
20 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
21 2 8 17 3 20 dvhelvbasei ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ ∈ ( Base ‘ 𝑈 ) )
22 14 16 19 21 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) ) ) ) → ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ ∈ ( Base ‘ 𝑈 ) )
23 simp3rl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) ) ) ) → 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) )
24 23 neneqd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) ) ) ) → ¬ 𝑔 = ( I ↾ ( Base ‘ 𝐾 ) ) )
25 24 intnanrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) ) ) ) → ¬ ( 𝑔 = ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) )
26 vex 𝑔 ∈ V
27 fvex ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∈ V
28 27 mptex ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∈ V
29 26 28 opth ( ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ ↔ ( 𝑔 = ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) )
30 29 necon3abii ( ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ ≠ ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ ↔ ¬ ( 𝑔 = ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) )
31 25 30 sylibr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) ) ) ) → ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ ≠ ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ )
32 eqid ( 0g𝑈 ) = ( 0g𝑈 )
33 6 2 8 3 32 9 dvh0g ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 0g𝑈 ) = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ )
34 14 33 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) ) ) ) → ( 0g𝑈 ) = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ )
35 31 34 neeqtrrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) ) ) ) → ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ ≠ ( 0g𝑈 ) )
36 20 10 32 5 lsatlspsn2 ( ( 𝑈 ∈ LMod ∧ ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ ∈ ( Base ‘ 𝑈 ) ∧ ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ ≠ ( 0g𝑈 ) ) → ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) ∈ 𝐿 )
37 15 22 35 36 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) ) ) ) → ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) ∈ 𝐿 )
38 13 37 eqeltrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) ) ) ) → ( 𝐼𝑄 ) ∈ 𝐿 )
39 38 3expa ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ } ) ) ) ) → ( 𝐼𝑄 ) ∈ 𝐿 )
40 12 39 rexlimddv ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝐼𝑄 ) ∈ 𝐿 )
41 eqid ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
42 eqid ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 )
43 7 1 2 41 8 4 3 10 42 dih1dimc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ } ) )
44 43 anassrs ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝐼𝑄 ) = ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ } ) )
45 simpll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
46 2 3 45 dvhlmod ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → 𝑈 ∈ LMod )
47 eqid ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 )
48 7 47 1 2 lhpocnel ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) )
49 48 ad2antrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) )
50 simplr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → 𝑄𝐴 )
51 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 )
52 7 1 2 8 42 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
53 45 49 50 51 52 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
54 2 8 17 tendoidcl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
55 54 ad2antrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
56 2 8 17 3 20 dvhelvbasei ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ⟨ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ ∈ ( Base ‘ 𝑈 ) )
57 45 53 55 56 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ⟨ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ ∈ ( Base ‘ 𝑈 ) )
58 6 2 8 17 9 tendo1ne0 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ≠ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) )
59 58 ad2antrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ≠ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) )
60 59 neneqd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ¬ ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) )
61 60 intnand ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ¬ ( ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) )
62 riotaex ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ∈ V
63 resiexg ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∈ V → ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ V )
64 27 63 ax-mp ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ V
65 62 64 opth ( ⟨ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ ↔ ( ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) )
66 65 necon3abii ( ⟨ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ ≠ ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ ↔ ¬ ( ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) = ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) )
67 61 66 sylibr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ⟨ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ ≠ ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ )
68 33 ad2antrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( 0g𝑈 ) = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ )
69 67 68 neeqtrrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ⟨ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ ≠ ( 0g𝑈 ) )
70 20 10 32 5 lsatlspsn2 ( ( 𝑈 ∈ LMod ∧ ⟨ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ ∈ ( Base ‘ 𝑈 ) ∧ ⟨ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ ≠ ( 0g𝑈 ) ) → ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ } ) ∈ 𝐿 )
71 46 57 69 70 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( ( LSpan ‘ 𝑈 ) ‘ { ⟨ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ } ) ∈ 𝐿 )
72 44 71 eqeltrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝐼𝑄 ) ∈ 𝐿 )
73 40 72 pm2.61dan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐴 ) → ( 𝐼𝑄 ) ∈ 𝐿 )