Step |
Hyp |
Ref |
Expression |
1 |
|
dihat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dihat.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dihat.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dihat.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dihat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
6 |
|
dihat.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
8 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
9 |
7 8 1
|
lhpocat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ ( Atoms ‘ 𝐾 ) ) |
10 |
6 9
|
syl |
⊢ ( 𝜑 → ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ ( Atoms ‘ 𝐾 ) ) |
11 |
2 10
|
eqeltrid |
⊢ ( 𝜑 → 𝑃 ∈ ( Atoms ‘ 𝐾 ) ) |
12 |
8 1 4 3 5
|
dihatlat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝐼 ‘ 𝑃 ) ∈ 𝐴 ) |
13 |
6 11 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑃 ) ∈ 𝐴 ) |