Metamath Proof Explorer


Theorem dihat

Description: There exists at least one atom in the subspaces of vector space H. (Contributed by NM, 12-Aug-2014)

Ref Expression
Hypotheses dihat.h 𝐻 = ( LHyp ‘ 𝐾 )
dihat.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
dihat.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
dihat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion dihat ( 𝜑 → ( 𝐼𝑃 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 dihat.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dihat.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
3 dihat.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
4 dihat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 dihat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
6 dihat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 eqid ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 )
8 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
9 7 8 1 lhpocat ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ ( Atoms ‘ 𝐾 ) )
10 6 9 syl ( 𝜑 → ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ ( Atoms ‘ 𝐾 ) )
11 2 10 eqeltrid ( 𝜑𝑃 ∈ ( Atoms ‘ 𝐾 ) )
12 8 1 4 3 5 dihatlat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝐼𝑃 ) ∈ 𝐴 )
13 6 11 12 syl2anc ( 𝜑 → ( 𝐼𝑃 ) ∈ 𝐴 )