| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihat.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dihat.p |
|- P = ( ( oc ` K ) ` W ) |
| 3 |
|
dihat.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 4 |
|
dihat.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 5 |
|
dihat.a |
|- A = ( LSAtoms ` U ) |
| 6 |
|
dihat.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 7 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
| 8 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
| 9 |
7 8 1
|
lhpocat |
|- ( ( K e. HL /\ W e. H ) -> ( ( oc ` K ) ` W ) e. ( Atoms ` K ) ) |
| 10 |
6 9
|
syl |
|- ( ph -> ( ( oc ` K ) ` W ) e. ( Atoms ` K ) ) |
| 11 |
2 10
|
eqeltrid |
|- ( ph -> P e. ( Atoms ` K ) ) |
| 12 |
8 1 4 3 5
|
dihatlat |
|- ( ( ( K e. HL /\ W e. H ) /\ P e. ( Atoms ` K ) ) -> ( I ` P ) e. A ) |
| 13 |
6 11 12
|
syl2anc |
|- ( ph -> ( I ` P ) e. A ) |