Metamath Proof Explorer


Theorem dihat

Description: There exists at least one atom in the subspaces of vector space H. (Contributed by NM, 12-Aug-2014)

Ref Expression
Hypotheses dihat.h H=LHypK
dihat.p P=ocKW
dihat.i I=DIsoHKW
dihat.u U=DVecHKW
dihat.a A=LSAtomsU
dihat.k φKHLWH
Assertion dihat φIPA

Proof

Step Hyp Ref Expression
1 dihat.h H=LHypK
2 dihat.p P=ocKW
3 dihat.i I=DIsoHKW
4 dihat.u U=DVecHKW
5 dihat.a A=LSAtomsU
6 dihat.k φKHLWH
7 eqid ocK=ocK
8 eqid AtomsK=AtomsK
9 7 8 1 lhpocat KHLWHocKWAtomsK
10 6 9 syl φocKWAtomsK
11 2 10 eqeltrid φPAtomsK
12 8 1 4 3 5 dihatlat KHLWHPAtomsKIPA
13 6 11 12 syl2anc φIPA