Metamath Proof Explorer


Theorem dihat

Description: There exists at least one atom in the subspaces of vector space H. (Contributed by NM, 12-Aug-2014)

Ref Expression
Hypotheses dihat.h H = LHyp K
dihat.p P = oc K W
dihat.i I = DIsoH K W
dihat.u U = DVecH K W
dihat.a A = LSAtoms U
dihat.k φ K HL W H
Assertion dihat φ I P A

Proof

Step Hyp Ref Expression
1 dihat.h H = LHyp K
2 dihat.p P = oc K W
3 dihat.i I = DIsoH K W
4 dihat.u U = DVecH K W
5 dihat.a A = LSAtoms U
6 dihat.k φ K HL W H
7 eqid oc K = oc K
8 eqid Atoms K = Atoms K
9 7 8 1 lhpocat K HL W H oc K W Atoms K
10 6 9 syl φ oc K W Atoms K
11 2 10 eqeltrid φ P Atoms K
12 8 1 4 3 5 dihatlat K HL W H P Atoms K I P A
13 6 11 12 syl2anc φ I P A