| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihp.b |
|
| 2 |
|
dihp.h |
|
| 3 |
|
dihp.p |
|
| 4 |
|
dihp.t |
|
| 5 |
|
dihp.e |
|
| 6 |
|
dihp.o |
|
| 7 |
|
dihp.i |
|
| 8 |
|
dihp.u |
|
| 9 |
|
dihp.n |
|
| 10 |
|
dihp.k |
|
| 11 |
|
dihp.s |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
2 8 10
|
dvhlvec |
|
| 15 |
2 3 7 8 13 10
|
dihat |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
16 17 2 3
|
lhpocnel2 |
|
| 19 |
|
eqid |
|
| 20 |
1 16 17 2 4 19
|
ltrniotaidvalN |
|
| 21 |
10 18 20
|
syl2anc2 |
|
| 22 |
21
|
fveq2d |
|
| 23 |
11
|
simpld |
|
| 24 |
1 2 5
|
tendoid |
|
| 25 |
10 23 24
|
syl2anc |
|
| 26 |
22 25
|
eqtr2d |
|
| 27 |
1
|
fvexi |
|
| 28 |
|
resiexg |
|
| 29 |
27 28
|
mp1i |
|
| 30 |
|
eqeq1 |
|
| 31 |
30
|
anbi1d |
|
| 32 |
|
fveq1 |
|
| 33 |
32
|
eqeq2d |
|
| 34 |
|
eleq1 |
|
| 35 |
33 34
|
anbi12d |
|
| 36 |
31 35
|
opelopabg |
|
| 37 |
29 23 36
|
syl2anc |
|
| 38 |
26 23 37
|
mpbir2and |
|
| 39 |
|
eqid |
|
| 40 |
16 17 2 39 7
|
dihvalcqat |
|
| 41 |
10 18 40
|
syl2anc2 |
|
| 42 |
16 17 2 3 4 5 39
|
dicval |
|
| 43 |
10 18 42
|
syl2anc2 |
|
| 44 |
41 43
|
eqtr2d |
|
| 45 |
38 44
|
eleqtrd |
|
| 46 |
11
|
simprd |
|
| 47 |
1 2 4 8 12 6
|
dvh0g |
|
| 48 |
10 47
|
syl |
|
| 49 |
48
|
eqeq2d |
|
| 50 |
27 28
|
ax-mp |
|
| 51 |
4
|
fvexi |
|
| 52 |
51
|
mptex |
|
| 53 |
6 52
|
eqeltri |
|
| 54 |
50 53
|
opth2 |
|
| 55 |
54
|
simprbi |
|
| 56 |
49 55
|
biimtrdi |
|
| 57 |
56
|
necon3d |
|
| 58 |
46 57
|
mpd |
|
| 59 |
12 9 13 14 15 45 58
|
lsatel |
|