Metamath Proof Explorer


Theorem dihlatat

Description: The reverse isomorphism H of a 1-dim subspace is an atom. (Contributed by NM, 28-Apr-2014)

Ref Expression
Hypotheses dihlatat.a A = Atoms K
dihlatat.h H = LHyp K
dihlatat.u U = DVecH K W
dihlatat.i I = DIsoH K W
dihlatat.l L = LSAtoms U
Assertion dihlatat K HL W H Q L I -1 Q A

Proof

Step Hyp Ref Expression
1 dihlatat.a A = Atoms K
2 dihlatat.h H = LHyp K
3 dihlatat.u U = DVecH K W
4 dihlatat.i I = DIsoH K W
5 dihlatat.l L = LSAtoms U
6 id K HL W H K HL W H
7 2 3 6 dvhlvec K HL W H U LVec
8 eqid Base U = Base U
9 eqid LSpan U = LSpan U
10 eqid 0 U = 0 U
11 8 9 10 5 islsat U LVec Q L v Base U 0 U Q = LSpan U v
12 7 11 syl K HL W H Q L v Base U 0 U Q = LSpan U v
13 12 biimpa K HL W H Q L v Base U 0 U Q = LSpan U v
14 eldifsn v Base U 0 U v Base U v 0 U
15 1 2 3 8 10 9 4 dihlspsnat K HL W H v Base U v 0 U I -1 LSpan U v A
16 15 3expb K HL W H v Base U v 0 U I -1 LSpan U v A
17 14 16 sylan2b K HL W H v Base U 0 U I -1 LSpan U v A
18 fveq2 Q = LSpan U v I -1 Q = I -1 LSpan U v
19 18 eleq1d Q = LSpan U v I -1 Q A I -1 LSpan U v A
20 17 19 syl5ibrcom K HL W H v Base U 0 U Q = LSpan U v I -1 Q A
21 20 rexlimdva K HL W H v Base U 0 U Q = LSpan U v I -1 Q A
22 21 adantr K HL W H Q L v Base U 0 U Q = LSpan U v I -1 Q A
23 13 22 mpd K HL W H Q L I -1 Q A