| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihlatat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 2 |
|
dihlatat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 3 |
|
dihlatat.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dihlatat.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
dihlatat.l |
⊢ 𝐿 = ( LSAtoms ‘ 𝑈 ) |
| 6 |
|
id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 7 |
2 3 6
|
dvhlvec |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑈 ∈ LVec ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 9 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
| 10 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 11 |
8 9 10 5
|
islsat |
⊢ ( 𝑈 ∈ LVec → ( 𝑄 ∈ 𝐿 ↔ ∃ 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) |
| 12 |
7 11
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑄 ∈ 𝐿 ↔ ∃ 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) |
| 13 |
12
|
biimpa |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐿 ) → ∃ 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) |
| 14 |
|
eldifsn |
⊢ ( 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) ↔ ( 𝑣 ∈ ( Base ‘ 𝑈 ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) ) |
| 15 |
1 2 3 8 10 9 4
|
dihlspsnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑣 ∈ ( Base ‘ 𝑈 ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) → ( ◡ 𝐼 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ∈ 𝐴 ) |
| 16 |
15
|
3expb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑣 ∈ ( Base ‘ 𝑈 ) ∧ 𝑣 ≠ ( 0g ‘ 𝑈 ) ) ) → ( ◡ 𝐼 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ∈ 𝐴 ) |
| 17 |
14 16
|
sylan2b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) ) → ( ◡ 𝐼 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ∈ 𝐴 ) |
| 18 |
|
fveq2 |
⊢ ( 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) → ( ◡ 𝐼 ‘ 𝑄 ) = ( ◡ 𝐼 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ) |
| 19 |
18
|
eleq1d |
⊢ ( 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) → ( ( ◡ 𝐼 ‘ 𝑄 ) ∈ 𝐴 ↔ ( ◡ 𝐼 ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) ) ∈ 𝐴 ) ) |
| 20 |
17 19
|
syl5ibrcom |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) ) → ( 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) → ( ◡ 𝐼 ‘ 𝑄 ) ∈ 𝐴 ) ) |
| 21 |
20
|
rexlimdva |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ∃ 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) → ( ◡ 𝐼 ‘ 𝑄 ) ∈ 𝐴 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐿 ) → ( ∃ 𝑣 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) 𝑄 = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑣 } ) → ( ◡ 𝐼 ‘ 𝑄 ) ∈ 𝐴 ) ) |
| 23 |
13 22
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐿 ) → ( ◡ 𝐼 ‘ 𝑄 ) ∈ 𝐴 ) |