Step |
Hyp |
Ref |
Expression |
1 |
|
dihlspsnat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
dihlspsnat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dihlspsnat.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dihlspsnat.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
dihlspsnat.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
dihlspsnat.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
dihlspsnat.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
10 |
8 2 7 3 9
|
dihf11 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 : ( Base ‘ 𝐾 ) –1-1→ ( LSubSp ‘ 𝑈 ) ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝐼 : ( Base ‘ 𝐾 ) –1-1→ ( LSubSp ‘ 𝑈 ) ) |
12 |
|
f1f1orn |
⊢ ( 𝐼 : ( Base ‘ 𝐾 ) –1-1→ ( LSubSp ‘ 𝑈 ) → 𝐼 : ( Base ‘ 𝐾 ) –1-1-onto→ ran 𝐼 ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝐼 : ( Base ‘ 𝐾 ) –1-1-onto→ ran 𝐼 ) |
14 |
2 3 4 6 7
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
15 |
14
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) |
16 |
|
f1ocnvdm |
⊢ ( ( 𝐼 : ( Base ‘ 𝐾 ) –1-1-onto→ ran 𝐼 ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( Base ‘ 𝐾 ) ) |
17 |
13 15 16
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( Base ‘ 𝐾 ) ) |
18 |
|
fveq2 |
⊢ ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 0. ‘ 𝐾 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) = ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) ) |
19 |
2 7
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
20 |
14 19
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
21 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
22 |
21 2 7 3 5
|
dih0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) = { 0 } ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) = { 0 } ) |
24 |
20 23
|
eqeq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) = ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) ↔ ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) ) |
25 |
|
id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
26 |
2 3 25
|
dvhlmod |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑈 ∈ LMod ) |
27 |
4 5 6
|
lspsneq0 |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
28 |
26 27
|
sylan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
29 |
24 28
|
bitrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) = ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) ↔ 𝑋 = 0 ) ) |
30 |
18 29
|
syl5ib |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 0. ‘ 𝐾 ) → 𝑋 = 0 ) ) |
31 |
30
|
necon3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ≠ 0 → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ≠ ( 0. ‘ 𝐾 ) ) ) |
32 |
31
|
3impia |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ≠ ( 0. ‘ 𝐾 ) ) |
33 |
|
simpll1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
34 |
2 3 33
|
dvhlvec |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → 𝑈 ∈ LVec ) |
35 |
|
simplr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → 𝑥 ∈ ( Base ‘ 𝐾 ) ) |
36 |
8 2 7 3 9
|
dihlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ 𝑥 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
37 |
33 35 36
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝐼 ‘ 𝑥 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
38 |
|
simpll2 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → 𝑋 ∈ 𝑉 ) |
39 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
40 |
4 5 9 6
|
lspsnat |
⊢ ( ( ( 𝑈 ∈ LVec ∧ ( 𝐼 ‘ 𝑥 ) ∈ ( LSubSp ‘ 𝑈 ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝑁 ‘ { 𝑋 } ) ∨ ( 𝐼 ‘ 𝑥 ) = { 0 } ) ) |
41 |
34 37 38 39 40
|
syl31anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝑁 ‘ { 𝑋 } ) ∨ ( 𝐼 ‘ 𝑥 ) = { 0 } ) ) |
42 |
41
|
ex |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝑁 ‘ { 𝑋 } ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝑁 ‘ { 𝑋 } ) ∨ ( 𝐼 ‘ 𝑥 ) = { 0 } ) ) ) |
43 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
44 |
43 15 19
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
45 |
44
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
46 |
45
|
sseq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) ↔ ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ) |
47 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
48 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → 𝑥 ∈ ( Base ‘ 𝐾 ) ) |
49 |
17
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( Base ‘ 𝐾 ) ) |
50 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
51 |
8 50 2 7
|
dihord |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) ↔ 𝑥 ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) ) |
52 |
47 48 49 51
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) ↔ 𝑥 ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) ) |
53 |
46 52
|
bitr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ 𝑥 ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ↔ 𝑥 ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) ) |
54 |
45
|
eqeq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) ↔ ( 𝐼 ‘ 𝑥 ) = ( 𝑁 ‘ { 𝑋 } ) ) ) |
55 |
8 2 7
|
dih11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) ↔ 𝑥 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) ) |
56 |
47 48 49 55
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) ↔ 𝑥 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) ) |
57 |
54 56
|
bitr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝑁 ‘ { 𝑋 } ) ↔ 𝑥 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ) ) |
58 |
47 22
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) = { 0 } ) |
59 |
58
|
eqeq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) ↔ ( 𝐼 ‘ 𝑥 ) = { 0 } ) ) |
60 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → 𝐾 ∈ HL ) |
61 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
62 |
8 21
|
op0cl |
⊢ ( 𝐾 ∈ OP → ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
63 |
60 61 62
|
3syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
64 |
8 2 7
|
dih11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) ↔ 𝑥 = ( 0. ‘ 𝐾 ) ) ) |
65 |
47 48 63 64
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) ↔ 𝑥 = ( 0. ‘ 𝐾 ) ) ) |
66 |
59 65
|
bitr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ 𝑥 ) = { 0 } ↔ 𝑥 = ( 0. ‘ 𝐾 ) ) ) |
67 |
57 66
|
orbi12d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝐼 ‘ 𝑥 ) = ( 𝑁 ‘ { 𝑋 } ) ∨ ( 𝐼 ‘ 𝑥 ) = { 0 } ) ↔ ( 𝑥 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∨ 𝑥 = ( 0. ‘ 𝐾 ) ) ) ) |
68 |
42 53 67
|
3imtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑥 ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑥 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∨ 𝑥 = ( 0. ‘ 𝐾 ) ) ) ) |
69 |
68
|
ralrimiva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑥 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∨ 𝑥 = ( 0. ‘ 𝐾 ) ) ) ) |
70 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝐾 ∈ HL ) |
71 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
72 |
8 50 21 1
|
isat3 |
⊢ ( 𝐾 ∈ AtLat → ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ 𝐴 ↔ ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ≠ ( 0. ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑥 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∨ 𝑥 = ( 0. ‘ 𝐾 ) ) ) ) ) ) |
73 |
70 71 72
|
3syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ 𝐴 ↔ ( ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ≠ ( 0. ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑥 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∨ 𝑥 = ( 0. ‘ 𝐾 ) ) ) ) ) ) |
74 |
17 32 69 73
|
mpbir3and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ 𝐴 ) |