| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dihatexv.b |  | 
						
							| 2 |  | dihatexv.a |  | 
						
							| 3 |  | dihatexv.h |  | 
						
							| 4 |  | dihatexv.u |  | 
						
							| 5 |  | dihatexv.v |  | 
						
							| 6 |  | dihatexv.o |  | 
						
							| 7 |  | dihatexv.n |  | 
						
							| 8 |  | dihatexv.i |  | 
						
							| 9 |  | dihatexv.k |  | 
						
							| 10 |  | dihatexv.q |  | 
						
							| 11 | 9 | ad2antrr |  | 
						
							| 12 |  | simplr |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 1 14 2 3 15 16 4 8 7 | dih1dimb2 |  | 
						
							| 18 | 11 12 13 17 | syl12anc |  | 
						
							| 19 | 9 | ad3antrrr |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 1 3 15 21 16 | tendo0cl |  | 
						
							| 23 | 19 22 | syl |  | 
						
							| 24 | 3 15 21 4 5 | dvhelvbasei |  | 
						
							| 25 | 19 20 23 24 | syl12anc |  | 
						
							| 26 |  | sneq |  | 
						
							| 27 | 26 | fveq2d |  | 
						
							| 28 | 27 | rspceeqv |  | 
						
							| 29 | 25 28 | sylan |  | 
						
							| 30 | 29 | ex |  | 
						
							| 31 | 30 | adantld |  | 
						
							| 32 | 31 | rexlimdva |  | 
						
							| 33 | 18 32 | mpd |  | 
						
							| 34 | 9 | ad2antrr |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 | 14 2 3 35 | lhpocnel2 |  | 
						
							| 37 | 34 36 | syl |  | 
						
							| 38 |  | simplr |  | 
						
							| 39 |  | simpr |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 | 14 2 3 15 40 | ltrniotacl |  | 
						
							| 42 | 34 37 38 39 41 | syl112anc |  | 
						
							| 43 | 3 15 21 | tendoidcl |  | 
						
							| 44 | 34 43 | syl |  | 
						
							| 45 | 3 15 21 4 5 | dvhelvbasei |  | 
						
							| 46 | 34 42 44 45 | syl12anc |  | 
						
							| 47 | 14 2 3 35 15 8 4 7 40 | dih1dimc |  | 
						
							| 48 | 34 38 39 47 | syl12anc |  | 
						
							| 49 |  | sneq |  | 
						
							| 50 | 49 | fveq2d |  | 
						
							| 51 | 50 | rspceeqv |  | 
						
							| 52 | 46 48 51 | syl2anc |  | 
						
							| 53 | 33 52 | pm2.61dan |  | 
						
							| 54 | 9 | simpld |  | 
						
							| 55 | 54 | ad3antrrr |  | 
						
							| 56 |  | hlatl |  | 
						
							| 57 | 55 56 | syl |  | 
						
							| 58 |  | simpllr |  | 
						
							| 59 |  | eqid |  | 
						
							| 60 | 59 2 | atn0 |  | 
						
							| 61 | 57 58 60 | syl2anc |  | 
						
							| 62 |  | sneq |  | 
						
							| 63 | 62 | fveq2d |  | 
						
							| 64 | 63 | 3ad2ant3 |  | 
						
							| 65 |  | simp1ll |  | 
						
							| 66 | 3 4 9 | dvhlmod |  | 
						
							| 67 | 6 7 | lspsn0 |  | 
						
							| 68 | 65 66 67 | 3syl |  | 
						
							| 69 | 64 68 | eqtrd |  | 
						
							| 70 |  | simp2 |  | 
						
							| 71 | 59 3 8 4 6 | dih0 |  | 
						
							| 72 | 65 9 71 | 3syl |  | 
						
							| 73 | 69 70 72 | 3eqtr4d |  | 
						
							| 74 | 65 9 | syl |  | 
						
							| 75 | 65 10 | syl |  | 
						
							| 76 | 65 54 | syl |  | 
						
							| 77 |  | hlop |  | 
						
							| 78 | 1 59 | op0cl |  | 
						
							| 79 | 76 77 78 | 3syl |  | 
						
							| 80 | 1 3 8 | dih11 |  | 
						
							| 81 | 74 75 79 80 | syl3anc |  | 
						
							| 82 | 73 81 | mpbid |  | 
						
							| 83 | 82 | 3expia |  | 
						
							| 84 | 83 | necon3d |  | 
						
							| 85 | 61 84 | mpd |  | 
						
							| 86 | 85 | ex |  | 
						
							| 87 | 86 | ancrd |  | 
						
							| 88 | 87 | reximdva |  | 
						
							| 89 | 53 88 | mpd |  | 
						
							| 90 | 89 | ex |  | 
						
							| 91 | 9 | ad2antrr |  | 
						
							| 92 | 10 | ad2antrr |  | 
						
							| 93 | 1 3 8 | dihcnvid1 |  | 
						
							| 94 | 91 92 93 | syl2anc |  | 
						
							| 95 |  | fveq2 |  | 
						
							| 96 | 95 | ad2antll |  | 
						
							| 97 | 94 96 | eqtr3d |  | 
						
							| 98 | 66 | ad2antrr |  | 
						
							| 99 |  | simplr |  | 
						
							| 100 |  | simprl |  | 
						
							| 101 |  | eqid |  | 
						
							| 102 | 5 7 6 101 | lsatlspsn2 |  | 
						
							| 103 | 98 99 100 102 | syl3anc |  | 
						
							| 104 | 2 3 4 8 101 | dihlatat |  | 
						
							| 105 | 91 103 104 | syl2anc |  | 
						
							| 106 | 97 105 | eqeltrd |  | 
						
							| 107 | 106 | ex |  | 
						
							| 108 | 107 | rexlimdva |  | 
						
							| 109 | 90 108 | impbid |  | 
						
							| 110 |  | rexdifsn |  | 
						
							| 111 | 109 110 | bitr4di |  |