Metamath Proof Explorer


Theorem dihatexv

Description: There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 16-Aug-2014)

Ref Expression
Hypotheses dihatexv.b B = Base K
dihatexv.a A = Atoms K
dihatexv.h H = LHyp K
dihatexv.u U = DVecH K W
dihatexv.v V = Base U
dihatexv.o 0 ˙ = 0 U
dihatexv.n N = LSpan U
dihatexv.i I = DIsoH K W
dihatexv.k φ K HL W H
dihatexv.q φ Q B
Assertion dihatexv φ Q A x V 0 ˙ I Q = N x

Proof

Step Hyp Ref Expression
1 dihatexv.b B = Base K
2 dihatexv.a A = Atoms K
3 dihatexv.h H = LHyp K
4 dihatexv.u U = DVecH K W
5 dihatexv.v V = Base U
6 dihatexv.o 0 ˙ = 0 U
7 dihatexv.n N = LSpan U
8 dihatexv.i I = DIsoH K W
9 dihatexv.k φ K HL W H
10 dihatexv.q φ Q B
11 9 ad2antrr φ Q A Q K W K HL W H
12 simplr φ Q A Q K W Q A
13 simpr φ Q A Q K W Q K W
14 eqid K = K
15 eqid LTrn K W = LTrn K W
16 eqid f LTrn K W I B = f LTrn K W I B
17 1 14 2 3 15 16 4 8 7 dih1dimb2 K HL W H Q A Q K W g LTrn K W g I B I Q = N g f LTrn K W I B
18 11 12 13 17 syl12anc φ Q A Q K W g LTrn K W g I B I Q = N g f LTrn K W I B
19 9 ad3antrrr φ Q A Q K W g LTrn K W K HL W H
20 simpr φ Q A Q K W g LTrn K W g LTrn K W
21 eqid TEndo K W = TEndo K W
22 1 3 15 21 16 tendo0cl K HL W H f LTrn K W I B TEndo K W
23 19 22 syl φ Q A Q K W g LTrn K W f LTrn K W I B TEndo K W
24 3 15 21 4 5 dvhelvbasei K HL W H g LTrn K W f LTrn K W I B TEndo K W g f LTrn K W I B V
25 19 20 23 24 syl12anc φ Q A Q K W g LTrn K W g f LTrn K W I B V
26 sneq x = g f LTrn K W I B x = g f LTrn K W I B
27 26 fveq2d x = g f LTrn K W I B N x = N g f LTrn K W I B
28 27 rspceeqv g f LTrn K W I B V I Q = N g f LTrn K W I B x V I Q = N x
29 25 28 sylan φ Q A Q K W g LTrn K W I Q = N g f LTrn K W I B x V I Q = N x
30 29 ex φ Q A Q K W g LTrn K W I Q = N g f LTrn K W I B x V I Q = N x
31 30 adantld φ Q A Q K W g LTrn K W g I B I Q = N g f LTrn K W I B x V I Q = N x
32 31 rexlimdva φ Q A Q K W g LTrn K W g I B I Q = N g f LTrn K W I B x V I Q = N x
33 18 32 mpd φ Q A Q K W x V I Q = N x
34 9 ad2antrr φ Q A ¬ Q K W K HL W H
35 eqid oc K W = oc K W
36 14 2 3 35 lhpocnel2 K HL W H oc K W A ¬ oc K W K W
37 34 36 syl φ Q A ¬ Q K W oc K W A ¬ oc K W K W
38 simplr φ Q A ¬ Q K W Q A
39 simpr φ Q A ¬ Q K W ¬ Q K W
40 eqid ι f LTrn K W | f oc K W = Q = ι f LTrn K W | f oc K W = Q
41 14 2 3 15 40 ltrniotacl K HL W H oc K W A ¬ oc K W K W Q A ¬ Q K W ι f LTrn K W | f oc K W = Q LTrn K W
42 34 37 38 39 41 syl112anc φ Q A ¬ Q K W ι f LTrn K W | f oc K W = Q LTrn K W
43 3 15 21 tendoidcl K HL W H I LTrn K W TEndo K W
44 34 43 syl φ Q A ¬ Q K W I LTrn K W TEndo K W
45 3 15 21 4 5 dvhelvbasei K HL W H ι f LTrn K W | f oc K W = Q LTrn K W I LTrn K W TEndo K W ι f LTrn K W | f oc K W = Q I LTrn K W V
46 34 42 44 45 syl12anc φ Q A ¬ Q K W ι f LTrn K W | f oc K W = Q I LTrn K W V
47 14 2 3 35 15 8 4 7 40 dih1dimc K HL W H Q A ¬ Q K W I Q = N ι f LTrn K W | f oc K W = Q I LTrn K W
48 34 38 39 47 syl12anc φ Q A ¬ Q K W I Q = N ι f LTrn K W | f oc K W = Q I LTrn K W
49 sneq x = ι f LTrn K W | f oc K W = Q I LTrn K W x = ι f LTrn K W | f oc K W = Q I LTrn K W
50 49 fveq2d x = ι f LTrn K W | f oc K W = Q I LTrn K W N x = N ι f LTrn K W | f oc K W = Q I LTrn K W
51 50 rspceeqv ι f LTrn K W | f oc K W = Q I LTrn K W V I Q = N ι f LTrn K W | f oc K W = Q I LTrn K W x V I Q = N x
52 46 48 51 syl2anc φ Q A ¬ Q K W x V I Q = N x
53 33 52 pm2.61dan φ Q A x V I Q = N x
54 9 simpld φ K HL
55 54 ad3antrrr φ Q A x V I Q = N x K HL
56 hlatl K HL K AtLat
57 55 56 syl φ Q A x V I Q = N x K AtLat
58 simpllr φ Q A x V I Q = N x Q A
59 eqid 0. K = 0. K
60 59 2 atn0 K AtLat Q A Q 0. K
61 57 58 60 syl2anc φ Q A x V I Q = N x Q 0. K
62 sneq x = 0 ˙ x = 0 ˙
63 62 fveq2d x = 0 ˙ N x = N 0 ˙
64 63 3ad2ant3 φ Q A x V I Q = N x x = 0 ˙ N x = N 0 ˙
65 simp1ll φ Q A x V I Q = N x x = 0 ˙ φ
66 3 4 9 dvhlmod φ U LMod
67 6 7 lspsn0 U LMod N 0 ˙ = 0 ˙
68 65 66 67 3syl φ Q A x V I Q = N x x = 0 ˙ N 0 ˙ = 0 ˙
69 64 68 eqtrd φ Q A x V I Q = N x x = 0 ˙ N x = 0 ˙
70 simp2 φ Q A x V I Q = N x x = 0 ˙ I Q = N x
71 59 3 8 4 6 dih0 K HL W H I 0. K = 0 ˙
72 65 9 71 3syl φ Q A x V I Q = N x x = 0 ˙ I 0. K = 0 ˙
73 69 70 72 3eqtr4d φ Q A x V I Q = N x x = 0 ˙ I Q = I 0. K
74 65 9 syl φ Q A x V I Q = N x x = 0 ˙ K HL W H
75 65 10 syl φ Q A x V I Q = N x x = 0 ˙ Q B
76 65 54 syl φ Q A x V I Q = N x x = 0 ˙ K HL
77 hlop K HL K OP
78 1 59 op0cl K OP 0. K B
79 76 77 78 3syl φ Q A x V I Q = N x x = 0 ˙ 0. K B
80 1 3 8 dih11 K HL W H Q B 0. K B I Q = I 0. K Q = 0. K
81 74 75 79 80 syl3anc φ Q A x V I Q = N x x = 0 ˙ I Q = I 0. K Q = 0. K
82 73 81 mpbid φ Q A x V I Q = N x x = 0 ˙ Q = 0. K
83 82 3expia φ Q A x V I Q = N x x = 0 ˙ Q = 0. K
84 83 necon3d φ Q A x V I Q = N x Q 0. K x 0 ˙
85 61 84 mpd φ Q A x V I Q = N x x 0 ˙
86 85 ex φ Q A x V I Q = N x x 0 ˙
87 86 ancrd φ Q A x V I Q = N x x 0 ˙ I Q = N x
88 87 reximdva φ Q A x V I Q = N x x V x 0 ˙ I Q = N x
89 53 88 mpd φ Q A x V x 0 ˙ I Q = N x
90 89 ex φ Q A x V x 0 ˙ I Q = N x
91 9 ad2antrr φ x V x 0 ˙ I Q = N x K HL W H
92 10 ad2antrr φ x V x 0 ˙ I Q = N x Q B
93 1 3 8 dihcnvid1 K HL W H Q B I -1 I Q = Q
94 91 92 93 syl2anc φ x V x 0 ˙ I Q = N x I -1 I Q = Q
95 fveq2 I Q = N x I -1 I Q = I -1 N x
96 95 ad2antll φ x V x 0 ˙ I Q = N x I -1 I Q = I -1 N x
97 94 96 eqtr3d φ x V x 0 ˙ I Q = N x Q = I -1 N x
98 66 ad2antrr φ x V x 0 ˙ I Q = N x U LMod
99 simplr φ x V x 0 ˙ I Q = N x x V
100 simprl φ x V x 0 ˙ I Q = N x x 0 ˙
101 eqid LSAtoms U = LSAtoms U
102 5 7 6 101 lsatlspsn2 U LMod x V x 0 ˙ N x LSAtoms U
103 98 99 100 102 syl3anc φ x V x 0 ˙ I Q = N x N x LSAtoms U
104 2 3 4 8 101 dihlatat K HL W H N x LSAtoms U I -1 N x A
105 91 103 104 syl2anc φ x V x 0 ˙ I Q = N x I -1 N x A
106 97 105 eqeltrd φ x V x 0 ˙ I Q = N x Q A
107 106 ex φ x V x 0 ˙ I Q = N x Q A
108 107 rexlimdva φ x V x 0 ˙ I Q = N x Q A
109 90 108 impbid φ Q A x V x 0 ˙ I Q = N x
110 rexdifsn x V 0 ˙ I Q = N x x V x 0 ˙ I Q = N x
111 109 110 bitr4di φ Q A x V 0 ˙ I Q = N x