| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihlsprn.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dihlsprn.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
dihlsprn.v |
|- V = ( Base ` U ) |
| 4 |
|
dihlsprn.n |
|- N = ( LSpan ` U ) |
| 5 |
|
dihlsprn.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 6 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V ) /\ X = ( 0g ` U ) ) -> X = ( 0g ` U ) ) |
| 7 |
6
|
sneqd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V ) /\ X = ( 0g ` U ) ) -> { X } = { ( 0g ` U ) } ) |
| 8 |
7
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V ) /\ X = ( 0g ` U ) ) -> ( N ` { X } ) = ( N ` { ( 0g ` U ) } ) ) |
| 9 |
|
simpll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V ) /\ X = ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) |
| 10 |
1 2 9
|
dvhlmod |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V ) /\ X = ( 0g ` U ) ) -> U e. LMod ) |
| 11 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
| 12 |
11 4
|
lspsn0 |
|- ( U e. LMod -> ( N ` { ( 0g ` U ) } ) = { ( 0g ` U ) } ) |
| 13 |
10 12
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V ) /\ X = ( 0g ` U ) ) -> ( N ` { ( 0g ` U ) } ) = { ( 0g ` U ) } ) |
| 14 |
8 13
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V ) /\ X = ( 0g ` U ) ) -> ( N ` { X } ) = { ( 0g ` U ) } ) |
| 15 |
1 5 2 11
|
dih0rn |
|- ( ( K e. HL /\ W e. H ) -> { ( 0g ` U ) } e. ran I ) |
| 16 |
15
|
ad2antrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V ) /\ X = ( 0g ` U ) ) -> { ( 0g ` U ) } e. ran I ) |
| 17 |
14 16
|
eqeltrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V ) /\ X = ( 0g ` U ) ) -> ( N ` { X } ) e. ran I ) |
| 18 |
|
simpll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V ) /\ X =/= ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) |
| 19 |
1 2 18
|
dvhlmod |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V ) /\ X =/= ( 0g ` U ) ) -> U e. LMod ) |
| 20 |
|
simplr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V ) /\ X =/= ( 0g ` U ) ) -> X e. V ) |
| 21 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V ) /\ X =/= ( 0g ` U ) ) -> X =/= ( 0g ` U ) ) |
| 22 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
| 23 |
3 4 11 22
|
lsatlspsn2 |
|- ( ( U e. LMod /\ X e. V /\ X =/= ( 0g ` U ) ) -> ( N ` { X } ) e. ( LSAtoms ` U ) ) |
| 24 |
19 20 21 23
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V ) /\ X =/= ( 0g ` U ) ) -> ( N ` { X } ) e. ( LSAtoms ` U ) ) |
| 25 |
1 2 5 22
|
dih1dimat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( N ` { X } ) e. ( LSAtoms ` U ) ) -> ( N ` { X } ) e. ran I ) |
| 26 |
18 24 25
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. V ) /\ X =/= ( 0g ` U ) ) -> ( N ` { X } ) e. ran I ) |
| 27 |
17 26
|
pm2.61dane |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. V ) -> ( N ` { X } ) e. ran I ) |