| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dih0rn.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dih0rn.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 3 |
|
dih0rn.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
dih0rn.o |
|- .0. = ( 0g ` U ) |
| 5 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 6 |
5 1 2 3 4
|
dih0 |
|- ( ( K e. HL /\ W e. H ) -> ( I ` ( 0. ` K ) ) = { .0. } ) |
| 7 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 8 |
7 1 2
|
dihfn |
|- ( ( K e. HL /\ W e. H ) -> I Fn ( Base ` K ) ) |
| 9 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 10 |
9
|
adantr |
|- ( ( K e. HL /\ W e. H ) -> K e. OP ) |
| 11 |
7 5
|
op0cl |
|- ( K e. OP -> ( 0. ` K ) e. ( Base ` K ) ) |
| 12 |
10 11
|
syl |
|- ( ( K e. HL /\ W e. H ) -> ( 0. ` K ) e. ( Base ` K ) ) |
| 13 |
|
fnfvelrn |
|- ( ( I Fn ( Base ` K ) /\ ( 0. ` K ) e. ( Base ` K ) ) -> ( I ` ( 0. ` K ) ) e. ran I ) |
| 14 |
8 12 13
|
syl2anc |
|- ( ( K e. HL /\ W e. H ) -> ( I ` ( 0. ` K ) ) e. ran I ) |
| 15 |
6 14
|
eqeltrrd |
|- ( ( K e. HL /\ W e. H ) -> { .0. } e. ran I ) |