Step |
Hyp |
Ref |
Expression |
1 |
|
dih0sb.h |
|- H = ( LHyp ` K ) |
2 |
|
dih0sb.o |
|- .0. = ( 0. ` K ) |
3 |
|
dih0sb.i |
|- I = ( ( DIsoH ` K ) ` W ) |
4 |
|
dih0sb.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
dih0sb.v |
|- V = ( Base ` U ) |
6 |
|
dih0sb.z |
|- Z = ( 0g ` U ) |
7 |
|
dih0sb.n |
|- N = ( LSpan ` U ) |
8 |
|
dih0sb.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
dih0sb.x |
|- ( ph -> X e. ran I ) |
10 |
1 3 4 6
|
dih0rn |
|- ( ( K e. HL /\ W e. H ) -> { Z } e. ran I ) |
11 |
8 10
|
syl |
|- ( ph -> { Z } e. ran I ) |
12 |
1 3 8 9 11
|
dihcnv11 |
|- ( ph -> ( ( `' I ` X ) = ( `' I ` { Z } ) <-> X = { Z } ) ) |
13 |
1 2 3 4 6
|
dih0cnv |
|- ( ( K e. HL /\ W e. H ) -> ( `' I ` { Z } ) = .0. ) |
14 |
8 13
|
syl |
|- ( ph -> ( `' I ` { Z } ) = .0. ) |
15 |
14
|
eqeq2d |
|- ( ph -> ( ( `' I ` X ) = ( `' I ` { Z } ) <-> ( `' I ` X ) = .0. ) ) |
16 |
12 15
|
bitr3d |
|- ( ph -> ( X = { Z } <-> ( `' I ` X ) = .0. ) ) |