| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dih1.m |
|- .1. = ( 1. ` K ) |
| 2 |
|
dih1.h |
|- H = ( LHyp ` K ) |
| 3 |
|
dih1.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 4 |
|
dih1.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 5 |
|
dih1.v |
|- V = ( Base ` U ) |
| 6 |
2 3
|
dihvalrel |
|- ( ( K e. HL /\ W e. H ) -> Rel ( I ` .1. ) ) |
| 7 |
|
relxp |
|- Rel ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) |
| 8 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
| 9 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
| 10 |
2 8 9 4 5
|
dvhvbase |
|- ( ( K e. HL /\ W e. H ) -> V = ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
| 11 |
10
|
releqd |
|- ( ( K e. HL /\ W e. H ) -> ( Rel V <-> Rel ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) ) |
| 12 |
7 11
|
mpbiri |
|- ( ( K e. HL /\ W e. H ) -> Rel V ) |
| 13 |
|
id |
|- ( ( K e. HL /\ W e. H ) -> ( K e. HL /\ W e. H ) ) |
| 14 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 15 |
14
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> K e. OP ) |
| 16 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 17 |
|
simprl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> f e. ( ( LTrn ` K ) ` W ) ) |
| 18 |
|
simprr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> s e. ( ( TEndo ` K ) ` W ) ) |
| 19 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 20 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
| 21 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
| 22 |
19 20 21 2
|
lhpocnel |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( oc ` K ) ` W ) e. ( Atoms ` K ) /\ -. ( ( oc ` K ) ` W ) ( le ` K ) W ) ) |
| 23 |
22
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( ( ( oc ` K ) ` W ) e. ( Atoms ` K ) /\ -. ( ( oc ` K ) ` W ) ( le ` K ) W ) ) |
| 24 |
|
eqid |
|- ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) = ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) |
| 25 |
19 21 2 8 24
|
ltrniotacl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( ( oc ` K ) ` W ) e. ( Atoms ` K ) /\ -. ( ( oc ` K ) ` W ) ( le ` K ) W ) /\ ( ( ( oc ` K ) ` W ) e. ( Atoms ` K ) /\ -. ( ( oc ` K ) ` W ) ( le ` K ) W ) ) -> ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) e. ( ( LTrn ` K ) ` W ) ) |
| 26 |
16 23 23 25
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) e. ( ( LTrn ` K ) ` W ) ) |
| 27 |
2 8 9
|
tendocl |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( ( TEndo ` K ) ` W ) /\ ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) e. ( ( LTrn ` K ) ` W ) ) -> ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) ) e. ( ( LTrn ` K ) ` W ) ) |
| 28 |
16 18 26 27
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) ) e. ( ( LTrn ` K ) ` W ) ) |
| 29 |
2 8
|
ltrncnv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) ) e. ( ( LTrn ` K ) ` W ) ) -> `' ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) ) e. ( ( LTrn ` K ) ` W ) ) |
| 30 |
28 29
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> `' ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) ) e. ( ( LTrn ` K ) ` W ) ) |
| 31 |
2 8
|
ltrnco |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( ( LTrn ` K ) ` W ) /\ `' ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) ) e. ( ( LTrn ` K ) ` W ) ) -> ( f o. `' ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) ) ) e. ( ( LTrn ` K ) ` W ) ) |
| 32 |
16 17 30 31
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( f o. `' ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) ) ) e. ( ( LTrn ` K ) ` W ) ) |
| 33 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 34 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
| 35 |
33 2 8 34
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( f o. `' ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) ) ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( f o. `' ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) ) ) ) e. ( Base ` K ) ) |
| 36 |
32 35
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( f o. `' ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) ) ) ) e. ( Base ` K ) ) |
| 37 |
33 19 1
|
ople1 |
|- ( ( K e. OP /\ ( ( ( trL ` K ) ` W ) ` ( f o. `' ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) ) ) ) e. ( Base ` K ) ) -> ( ( ( trL ` K ) ` W ) ` ( f o. `' ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) ) ) ) ( le ` K ) .1. ) |
| 38 |
15 36 37
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( f o. `' ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) ) ) ) ( le ` K ) .1. ) |
| 39 |
38
|
ex |
|- ( ( K e. HL /\ W e. H ) -> ( ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( f o. `' ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) ) ) ) ( le ` K ) .1. ) ) |
| 40 |
39
|
pm4.71d |
|- ( ( K e. HL /\ W e. H ) -> ( ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) <-> ( ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) /\ ( ( ( trL ` K ) ` W ) ` ( f o. `' ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) ) ) ) ( le ` K ) .1. ) ) ) |
| 41 |
10
|
eleq2d |
|- ( ( K e. HL /\ W e. H ) -> ( <. f , s >. e. V <-> <. f , s >. e. ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) ) |
| 42 |
|
opelxp |
|- ( <. f , s >. e. ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) <-> ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) |
| 43 |
41 42
|
bitrdi |
|- ( ( K e. HL /\ W e. H ) -> ( <. f , s >. e. V <-> ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) ) |
| 44 |
14
|
adantr |
|- ( ( K e. HL /\ W e. H ) -> K e. OP ) |
| 45 |
33 1
|
op1cl |
|- ( K e. OP -> .1. e. ( Base ` K ) ) |
| 46 |
44 45
|
syl |
|- ( ( K e. HL /\ W e. H ) -> .1. e. ( Base ` K ) ) |
| 47 |
|
hlpos |
|- ( K e. HL -> K e. Poset ) |
| 48 |
47
|
adantr |
|- ( ( K e. HL /\ W e. H ) -> K e. Poset ) |
| 49 |
33 2
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 50 |
49
|
adantl |
|- ( ( K e. HL /\ W e. H ) -> W e. ( Base ` K ) ) |
| 51 |
|
eqid |
|- ( |
| 52 |
1 51 2
|
lhp1cvr |
|- ( ( K e. HL /\ W e. H ) -> W ( |
| 53 |
33 19 51
|
cvrnle |
|- ( ( ( K e. Poset /\ W e. ( Base ` K ) /\ .1. e. ( Base ` K ) ) /\ W ( -. .1. ( le ` K ) W ) |
| 54 |
48 50 46 52 53
|
syl31anc |
|- ( ( K e. HL /\ W e. H ) -> -. .1. ( le ` K ) W ) |
| 55 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 56 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 57 |
33 56 1
|
olm12 |
|- ( ( K e. OL /\ W e. ( Base ` K ) ) -> ( .1. ( meet ` K ) W ) = W ) |
| 58 |
55 49 57
|
syl2an |
|- ( ( K e. HL /\ W e. H ) -> ( .1. ( meet ` K ) W ) = W ) |
| 59 |
58
|
oveq2d |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( oc ` K ) ` W ) ( join ` K ) ( .1. ( meet ` K ) W ) ) = ( ( ( oc ` K ) ` W ) ( join ` K ) W ) ) |
| 60 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 61 |
60
|
adantr |
|- ( ( K e. HL /\ W e. H ) -> K e. Lat ) |
| 62 |
33 20
|
opoccl |
|- ( ( K e. OP /\ W e. ( Base ` K ) ) -> ( ( oc ` K ) ` W ) e. ( Base ` K ) ) |
| 63 |
14 49 62
|
syl2an |
|- ( ( K e. HL /\ W e. H ) -> ( ( oc ` K ) ` W ) e. ( Base ` K ) ) |
| 64 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 65 |
33 64
|
latjcom |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( ( oc ` K ) ` W ) ( join ` K ) W ) = ( W ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
| 66 |
61 63 50 65
|
syl3anc |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( oc ` K ) ` W ) ( join ` K ) W ) = ( W ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
| 67 |
33 20 64 1
|
opexmid |
|- ( ( K e. OP /\ W e. ( Base ` K ) ) -> ( W ( join ` K ) ( ( oc ` K ) ` W ) ) = .1. ) |
| 68 |
14 49 67
|
syl2an |
|- ( ( K e. HL /\ W e. H ) -> ( W ( join ` K ) ( ( oc ` K ) ` W ) ) = .1. ) |
| 69 |
59 66 68
|
3eqtrd |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( oc ` K ) ` W ) ( join ` K ) ( .1. ( meet ` K ) W ) ) = .1. ) |
| 70 |
|
eqid |
|- ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) |
| 71 |
|
vex |
|- f e. _V |
| 72 |
|
vex |
|- s e. _V |
| 73 |
33 19 64 56 21 2 70 8 34 9 3 24 71 72
|
dihopelvalc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( .1. e. ( Base ` K ) /\ -. .1. ( le ` K ) W ) /\ ( ( ( ( oc ` K ) ` W ) e. ( Atoms ` K ) /\ -. ( ( oc ` K ) ` W ) ( le ` K ) W ) /\ ( ( ( oc ` K ) ` W ) ( join ` K ) ( .1. ( meet ` K ) W ) ) = .1. ) ) -> ( <. f , s >. e. ( I ` .1. ) <-> ( ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) /\ ( ( ( trL ` K ) ` W ) ` ( f o. `' ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) ) ) ) ( le ` K ) .1. ) ) ) |
| 74 |
13 46 54 22 69 73
|
syl122anc |
|- ( ( K e. HL /\ W e. H ) -> ( <. f , s >. e. ( I ` .1. ) <-> ( ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) /\ ( ( ( trL ` K ) ` W ) ` ( f o. `' ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) ) ) ) ( le ` K ) .1. ) ) ) |
| 75 |
40 43 74
|
3bitr4rd |
|- ( ( K e. HL /\ W e. H ) -> ( <. f , s >. e. ( I ` .1. ) <-> <. f , s >. e. V ) ) |
| 76 |
75
|
eqrelrdv2 |
|- ( ( ( Rel ( I ` .1. ) /\ Rel V ) /\ ( K e. HL /\ W e. H ) ) -> ( I ` .1. ) = V ) |
| 77 |
6 12 13 76
|
syl21anc |
|- ( ( K e. HL /\ W e. H ) -> ( I ` .1. ) = V ) |