Step |
Hyp |
Ref |
Expression |
1 |
|
dih1.m |
|
2 |
|
dih1.h |
|
3 |
|
dih1.i |
|
4 |
|
dih1.u |
|
5 |
|
dih1.v |
|
6 |
2 3
|
dihvalrel |
|
7 |
|
relxp |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
2 8 9 4 5
|
dvhvbase |
|
11 |
10
|
releqd |
|
12 |
7 11
|
mpbiri |
|
13 |
|
id |
|
14 |
|
hlop |
|
15 |
14
|
ad2antrr |
|
16 |
|
simpl |
|
17 |
|
simprl |
|
18 |
|
simprr |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
19 20 21 2
|
lhpocnel |
|
23 |
22
|
adantr |
|
24 |
|
eqid |
|
25 |
19 21 2 8 24
|
ltrniotacl |
|
26 |
16 23 23 25
|
syl3anc |
|
27 |
2 8 9
|
tendocl |
|
28 |
16 18 26 27
|
syl3anc |
|
29 |
2 8
|
ltrncnv |
|
30 |
28 29
|
syldan |
|
31 |
2 8
|
ltrnco |
|
32 |
16 17 30 31
|
syl3anc |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
33 2 8 34
|
trlcl |
|
36 |
32 35
|
syldan |
|
37 |
33 19 1
|
ople1 |
|
38 |
15 36 37
|
syl2anc |
|
39 |
38
|
ex |
|
40 |
39
|
pm4.71d |
|
41 |
10
|
eleq2d |
|
42 |
|
opelxp |
|
43 |
41 42
|
bitrdi |
|
44 |
14
|
adantr |
|
45 |
33 1
|
op1cl |
|
46 |
44 45
|
syl |
|
47 |
|
hlpos |
|
48 |
47
|
adantr |
|
49 |
33 2
|
lhpbase |
|
50 |
49
|
adantl |
|
51 |
|
eqid |
|
52 |
1 51 2
|
lhp1cvr |
|
53 |
33 19 51
|
cvrnle |
|
54 |
48 50 46 52 53
|
syl31anc |
|
55 |
|
hlol |
|
56 |
|
eqid |
|
57 |
33 56 1
|
olm12 |
|
58 |
55 49 57
|
syl2an |
|
59 |
58
|
oveq2d |
|
60 |
|
hllat |
|
61 |
60
|
adantr |
|
62 |
33 20
|
opoccl |
|
63 |
14 49 62
|
syl2an |
|
64 |
|
eqid |
|
65 |
33 64
|
latjcom |
|
66 |
61 63 50 65
|
syl3anc |
|
67 |
33 20 64 1
|
opexmid |
|
68 |
14 49 67
|
syl2an |
|
69 |
59 66 68
|
3eqtrd |
|
70 |
|
eqid |
|
71 |
|
vex |
|
72 |
|
vex |
|
73 |
33 19 64 56 21 2 70 8 34 9 3 24 71 72
|
dihopelvalc |
|
74 |
13 46 54 22 69 73
|
syl122anc |
|
75 |
40 43 74
|
3bitr4rd |
|
76 |
75
|
eqrelrdv2 |
|
77 |
6 12 13 76
|
syl21anc |
|