| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dih1.m |
|
| 2 |
|
dih1.h |
|
| 3 |
|
dih1.i |
|
| 4 |
|
dih1.u |
|
| 5 |
|
dih1.v |
|
| 6 |
2 3
|
dihvalrel |
|
| 7 |
|
relxp |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
2 8 9 4 5
|
dvhvbase |
|
| 11 |
10
|
releqd |
|
| 12 |
7 11
|
mpbiri |
|
| 13 |
|
id |
|
| 14 |
|
hlop |
|
| 15 |
14
|
ad2antrr |
|
| 16 |
|
simpl |
|
| 17 |
|
simprl |
|
| 18 |
|
simprr |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
19 20 21 2
|
lhpocnel |
|
| 23 |
22
|
adantr |
|
| 24 |
|
eqid |
|
| 25 |
19 21 2 8 24
|
ltrniotacl |
|
| 26 |
16 23 23 25
|
syl3anc |
|
| 27 |
2 8 9
|
tendocl |
|
| 28 |
16 18 26 27
|
syl3anc |
|
| 29 |
2 8
|
ltrncnv |
|
| 30 |
28 29
|
syldan |
|
| 31 |
2 8
|
ltrnco |
|
| 32 |
16 17 30 31
|
syl3anc |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
33 2 8 34
|
trlcl |
|
| 36 |
32 35
|
syldan |
|
| 37 |
33 19 1
|
ople1 |
|
| 38 |
15 36 37
|
syl2anc |
|
| 39 |
38
|
ex |
|
| 40 |
39
|
pm4.71d |
|
| 41 |
10
|
eleq2d |
|
| 42 |
|
opelxp |
|
| 43 |
41 42
|
bitrdi |
|
| 44 |
14
|
adantr |
|
| 45 |
33 1
|
op1cl |
|
| 46 |
44 45
|
syl |
|
| 47 |
|
hlpos |
|
| 48 |
47
|
adantr |
|
| 49 |
33 2
|
lhpbase |
|
| 50 |
49
|
adantl |
|
| 51 |
|
eqid |
|
| 52 |
1 51 2
|
lhp1cvr |
|
| 53 |
33 19 51
|
cvrnle |
|
| 54 |
48 50 46 52 53
|
syl31anc |
|
| 55 |
|
hlol |
|
| 56 |
|
eqid |
|
| 57 |
33 56 1
|
olm12 |
|
| 58 |
55 49 57
|
syl2an |
|
| 59 |
58
|
oveq2d |
|
| 60 |
|
hllat |
|
| 61 |
60
|
adantr |
|
| 62 |
33 20
|
opoccl |
|
| 63 |
14 49 62
|
syl2an |
|
| 64 |
|
eqid |
|
| 65 |
33 64
|
latjcom |
|
| 66 |
61 63 50 65
|
syl3anc |
|
| 67 |
33 20 64 1
|
opexmid |
|
| 68 |
14 49 67
|
syl2an |
|
| 69 |
59 66 68
|
3eqtrd |
|
| 70 |
|
eqid |
|
| 71 |
|
vex |
|
| 72 |
|
vex |
|
| 73 |
33 19 64 56 21 2 70 8 34 9 3 24 71 72
|
dihopelvalc |
|
| 74 |
13 46 54 22 69 73
|
syl122anc |
|
| 75 |
40 43 74
|
3bitr4rd |
|
| 76 |
75
|
eqrelrdv2 |
|
| 77 |
6 12 13 76
|
syl21anc |
|