Metamath Proof Explorer


Theorem dih1rn

Description: The full vector space belongs to the range of isomorphism H. (Contributed by NM, 19-Jun-2014)

Ref Expression
Hypotheses dih1rn.h H = LHyp K
dih1rn.i I = DIsoH K W
dih1rn.u U = DVecH K W
dih1rn.v V = Base U
Assertion dih1rn K HL W H V ran I

Proof

Step Hyp Ref Expression
1 dih1rn.h H = LHyp K
2 dih1rn.i I = DIsoH K W
3 dih1rn.u U = DVecH K W
4 dih1rn.v V = Base U
5 eqid 1. K = 1. K
6 5 1 2 3 4 dih1 K HL W H I 1. K = V
7 hlop K HL K OP
8 7 adantr K HL W H K OP
9 eqid Base K = Base K
10 9 5 op1cl K OP 1. K Base K
11 8 10 syl K HL W H 1. K Base K
12 9 1 2 dihcl K HL W H 1. K Base K I 1. K ran I
13 11 12 mpdan K HL W H I 1. K ran I
14 6 13 eqeltrrd K HL W H V ran I