Metamath Proof Explorer


Theorem cvrnle

Description: The covers relation implies the negation of the converse "less than or equal to" relation. (Contributed by NM, 18-Oct-2011)

Ref Expression
Hypotheses cvrle.b B=BaseK
cvrle.l ˙=K
cvrle.c C=K
Assertion cvrnle KPosetXBYBXCY¬Y˙X

Proof

Step Hyp Ref Expression
1 cvrle.b B=BaseK
2 cvrle.l ˙=K
3 cvrle.c C=K
4 eqid <K=<K
5 1 4 3 cvrlt KPosetXBYBXCYX<KY
6 1 2 4 pltnle KPosetXBYBX<KY¬Y˙X
7 5 6 syldan KPosetXBYBXCY¬Y˙X