Metamath Proof Explorer


Theorem cvrne

Description: The covers relation implies inequality. (Contributed by NM, 13-Oct-2011)

Ref Expression
Hypotheses cvrne.b B=BaseK
cvrne.c C=K
Assertion cvrne KAXBYBXCYXY

Proof

Step Hyp Ref Expression
1 cvrne.b B=BaseK
2 cvrne.c C=K
3 eqid <K=<K
4 1 3 2 cvrlt KAXBYBXCYX<KY
5 eqid K=K
6 5 3 pltval KAXBYBX<KYXKYXY
7 6 simplbda KAXBYBX<KYXY
8 4 7 syldan KAXBYBXCYXY