Metamath Proof Explorer


Theorem opexmid

Description: Law of excluded middle for orthoposets. ( chjo analog.) (Contributed by NM, 13-Sep-2011)

Ref Expression
Hypotheses opexmid.b B=BaseK
opexmid.o ˙=ocK
opexmid.j ˙=joinK
opexmid.u 1˙=1.K
Assertion opexmid KOPXBX˙˙X=1˙

Proof

Step Hyp Ref Expression
1 opexmid.b B=BaseK
2 opexmid.o ˙=ocK
3 opexmid.j ˙=joinK
4 opexmid.u 1˙=1.K
5 eqid K=K
6 eqid meetK=meetK
7 eqid 0.K=0.K
8 1 5 2 3 6 7 4 oposlem KOPXBXB˙XB˙˙X=XXKX˙XK˙XX˙˙X=1˙XmeetK˙X=0.K
9 8 3anidm23 KOPXB˙XB˙˙X=XXKX˙XK˙XX˙˙X=1˙XmeetK˙X=0.K
10 9 simp2d KOPXBX˙˙X=1˙