Metamath Proof Explorer


Theorem chjo

Description: The join of a closed subspace and its orthocomplement is all of Hilbert space. (Contributed by NM, 31-Oct-2005) (New usage is discouraged.)

Ref Expression
Assertion chjo ACAA=

Proof

Step Hyp Ref Expression
1 id A=ifACAA=ifACA
2 fveq2 A=ifACAA=ifACA
3 1 2 oveq12d A=ifACAAA=ifACAifACA
4 3 eqeq1d A=ifACAAA=ifACAifACA=
5 ifchhv ifACAC
6 5 chjoi ifACAifACA=
7 4 6 dedth ACAA=