Metamath Proof Explorer


Theorem opexmid

Description: Law of excluded middle for orthoposets. ( chjo analog.) (Contributed by NM, 13-Sep-2011)

Ref Expression
Hypotheses opexmid.b 𝐵 = ( Base ‘ 𝐾 )
opexmid.o = ( oc ‘ 𝐾 )
opexmid.j = ( join ‘ 𝐾 )
opexmid.u 1 = ( 1. ‘ 𝐾 )
Assertion opexmid ( ( 𝐾 ∈ OP ∧ 𝑋𝐵 ) → ( 𝑋 ( 𝑋 ) ) = 1 )

Proof

Step Hyp Ref Expression
1 opexmid.b 𝐵 = ( Base ‘ 𝐾 )
2 opexmid.o = ( oc ‘ 𝐾 )
3 opexmid.j = ( join ‘ 𝐾 )
4 opexmid.u 1 = ( 1. ‘ 𝐾 )
5 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
6 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
7 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
8 1 5 2 3 6 7 4 oposlem ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑋𝐵 ) → ( ( ( 𝑋 ) ∈ 𝐵 ∧ ( ‘ ( 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ( le ‘ 𝐾 ) 𝑋 → ( 𝑋 ) ( le ‘ 𝐾 ) ( 𝑋 ) ) ) ∧ ( 𝑋 ( 𝑋 ) ) = 1 ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑋 ) ) = ( 0. ‘ 𝐾 ) ) )
9 8 3anidm23 ( ( 𝐾 ∈ OP ∧ 𝑋𝐵 ) → ( ( ( 𝑋 ) ∈ 𝐵 ∧ ( ‘ ( 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ( le ‘ 𝐾 ) 𝑋 → ( 𝑋 ) ( le ‘ 𝐾 ) ( 𝑋 ) ) ) ∧ ( 𝑋 ( 𝑋 ) ) = 1 ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑋 ) ) = ( 0. ‘ 𝐾 ) ) )
10 9 simp2d ( ( 𝐾 ∈ OP ∧ 𝑋𝐵 ) → ( 𝑋 ( 𝑋 ) ) = 1 )