Metamath Proof Explorer


Theorem opexmid

Description: Law of excluded middle for orthoposets. ( chjo analog.) (Contributed by NM, 13-Sep-2011)

Ref Expression
Hypotheses opexmid.b
|- B = ( Base ` K )
opexmid.o
|- ._|_ = ( oc ` K )
opexmid.j
|- .\/ = ( join ` K )
opexmid.u
|- .1. = ( 1. ` K )
Assertion opexmid
|- ( ( K e. OP /\ X e. B ) -> ( X .\/ ( ._|_ ` X ) ) = .1. )

Proof

Step Hyp Ref Expression
1 opexmid.b
 |-  B = ( Base ` K )
2 opexmid.o
 |-  ._|_ = ( oc ` K )
3 opexmid.j
 |-  .\/ = ( join ` K )
4 opexmid.u
 |-  .1. = ( 1. ` K )
5 eqid
 |-  ( le ` K ) = ( le ` K )
6 eqid
 |-  ( meet ` K ) = ( meet ` K )
7 eqid
 |-  ( 0. ` K ) = ( 0. ` K )
8 1 5 2 3 6 7 4 oposlem
 |-  ( ( K e. OP /\ X e. B /\ X e. B ) -> ( ( ( ._|_ ` X ) e. B /\ ( ._|_ ` ( ._|_ ` X ) ) = X /\ ( X ( le ` K ) X -> ( ._|_ ` X ) ( le ` K ) ( ._|_ ` X ) ) ) /\ ( X .\/ ( ._|_ ` X ) ) = .1. /\ ( X ( meet ` K ) ( ._|_ ` X ) ) = ( 0. ` K ) ) )
9 8 3anidm23
 |-  ( ( K e. OP /\ X e. B ) -> ( ( ( ._|_ ` X ) e. B /\ ( ._|_ ` ( ._|_ ` X ) ) = X /\ ( X ( le ` K ) X -> ( ._|_ ` X ) ( le ` K ) ( ._|_ ` X ) ) ) /\ ( X .\/ ( ._|_ ` X ) ) = .1. /\ ( X ( meet ` K ) ( ._|_ ` X ) ) = ( 0. ` K ) ) )
10 9 simp2d
 |-  ( ( K e. OP /\ X e. B ) -> ( X .\/ ( ._|_ ` X ) ) = .1. )