Metamath Proof Explorer


Theorem dihvalrel

Description: The value of isomorphism H is a relation. (Contributed by NM, 9-Mar-2014)

Ref Expression
Hypotheses dihvalrel.h H = LHyp K
dihvalrel.i I = DIsoH K W
Assertion dihvalrel K HL W H Rel I X

Proof

Step Hyp Ref Expression
1 dihvalrel.h H = LHyp K
2 dihvalrel.i I = DIsoH K W
3 eqid Base K = Base K
4 3 1 2 dihdm K HL W H dom I = Base K
5 4 eleq2d K HL W H X dom I X Base K
6 eqid DVecH K W = DVecH K W
7 eqid Base DVecH K W = Base DVecH K W
8 3 1 2 6 7 dihss K HL W H X Base K I X Base DVecH K W
9 eqid LTrn K W = LTrn K W
10 eqid TEndo K W = TEndo K W
11 1 9 10 6 7 dvhvbase K HL W H Base DVecH K W = LTrn K W × TEndo K W
12 11 adantr K HL W H X Base K Base DVecH K W = LTrn K W × TEndo K W
13 8 12 sseqtrd K HL W H X Base K I X LTrn K W × TEndo K W
14 xpss LTrn K W × TEndo K W V × V
15 13 14 sstrdi K HL W H X Base K I X V × V
16 df-rel Rel I X I X V × V
17 15 16 sylibr K HL W H X Base K Rel I X
18 17 ex K HL W H X Base K Rel I X
19 5 18 sylbid K HL W H X dom I Rel I X
20 rel0 Rel
21 ndmfv ¬ X dom I I X =
22 21 releqd ¬ X dom I Rel I X Rel
23 20 22 mpbiri ¬ X dom I Rel I X
24 19 23 pm2.61d1 K HL W H Rel I X