Metamath Proof Explorer


Theorem dihvalrel

Description: The value of isomorphism H is a relation. (Contributed by NM, 9-Mar-2014)

Ref Expression
Hypotheses dihvalrel.h H=LHypK
dihvalrel.i I=DIsoHKW
Assertion dihvalrel KHLWHRelIX

Proof

Step Hyp Ref Expression
1 dihvalrel.h H=LHypK
2 dihvalrel.i I=DIsoHKW
3 eqid BaseK=BaseK
4 3 1 2 dihdm KHLWHdomI=BaseK
5 4 eleq2d KHLWHXdomIXBaseK
6 eqid DVecHKW=DVecHKW
7 eqid BaseDVecHKW=BaseDVecHKW
8 3 1 2 6 7 dihss KHLWHXBaseKIXBaseDVecHKW
9 eqid LTrnKW=LTrnKW
10 eqid TEndoKW=TEndoKW
11 1 9 10 6 7 dvhvbase KHLWHBaseDVecHKW=LTrnKW×TEndoKW
12 11 adantr KHLWHXBaseKBaseDVecHKW=LTrnKW×TEndoKW
13 8 12 sseqtrd KHLWHXBaseKIXLTrnKW×TEndoKW
14 xpss LTrnKW×TEndoKWV×V
15 13 14 sstrdi KHLWHXBaseKIXV×V
16 df-rel RelIXIXV×V
17 15 16 sylibr KHLWHXBaseKRelIX
18 17 ex KHLWHXBaseKRelIX
19 5 18 sylbid KHLWHXdomIRelIX
20 rel0 Rel
21 ndmfv ¬XdomIIX=
22 21 releqd ¬XdomIRelIXRel
23 20 22 mpbiri ¬XdomIRelIX
24 19 23 pm2.61d1 KHLWHRelIX