Metamath Proof Explorer


Theorem dihvalrel

Description: The value of isomorphism H is a relation. (Contributed by NM, 9-Mar-2014)

Ref Expression
Hypotheses dihvalrel.h 𝐻 = ( LHyp ‘ 𝐾 )
dihvalrel.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dihvalrel ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → Rel ( 𝐼𝑋 ) )

Proof

Step Hyp Ref Expression
1 dihvalrel.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dihvalrel.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
3 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
4 3 1 2 dihdm ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → dom 𝐼 = ( Base ‘ 𝐾 ) )
5 4 eleq2d ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑋 ∈ dom 𝐼𝑋 ∈ ( Base ‘ 𝐾 ) ) )
6 eqid ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
7 eqid ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
8 3 1 2 6 7 dihss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
9 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
10 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
11 1 9 10 6 7 dvhvbase ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
12 11 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ) → ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
13 8 12 sseqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼𝑋 ) ⊆ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
14 xpss ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ⊆ ( V × V )
15 13 14 sstrdi ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼𝑋 ) ⊆ ( V × V ) )
16 df-rel ( Rel ( 𝐼𝑋 ) ↔ ( 𝐼𝑋 ) ⊆ ( V × V ) )
17 15 16 sylibr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ) → Rel ( 𝐼𝑋 ) )
18 17 ex ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑋 ∈ ( Base ‘ 𝐾 ) → Rel ( 𝐼𝑋 ) ) )
19 5 18 sylbid ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑋 ∈ dom 𝐼 → Rel ( 𝐼𝑋 ) ) )
20 rel0 Rel ∅
21 ndmfv ( ¬ 𝑋 ∈ dom 𝐼 → ( 𝐼𝑋 ) = ∅ )
22 21 releqd ( ¬ 𝑋 ∈ dom 𝐼 → ( Rel ( 𝐼𝑋 ) ↔ Rel ∅ ) )
23 20 22 mpbiri ( ¬ 𝑋 ∈ dom 𝐼 → Rel ( 𝐼𝑋 ) )
24 19 23 pm2.61d1 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → Rel ( 𝐼𝑋 ) )