| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihvalrel.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dihvalrel.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 4 |
3 1 2
|
dihdm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → dom 𝐼 = ( Base ‘ 𝐾 ) ) |
| 5 |
4
|
eleq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ ( Base ‘ 𝐾 ) ) ) |
| 6 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 8 |
3 1 2 6 7
|
dihss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 9 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 10 |
|
eqid |
⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 11 |
1 9 10 6 7
|
dvhvbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 12 |
11
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ) → ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 13 |
8 12
|
sseqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ 𝑋 ) ⊆ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 14 |
|
xpss |
⊢ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ⊆ ( V × V ) |
| 15 |
13 14
|
sstrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ 𝑋 ) ⊆ ( V × V ) ) |
| 16 |
|
df-rel |
⊢ ( Rel ( 𝐼 ‘ 𝑋 ) ↔ ( 𝐼 ‘ 𝑋 ) ⊆ ( V × V ) ) |
| 17 |
15 16
|
sylibr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ) → Rel ( 𝐼 ‘ 𝑋 ) ) |
| 18 |
17
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑋 ∈ ( Base ‘ 𝐾 ) → Rel ( 𝐼 ‘ 𝑋 ) ) ) |
| 19 |
5 18
|
sylbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑋 ∈ dom 𝐼 → Rel ( 𝐼 ‘ 𝑋 ) ) ) |
| 20 |
|
rel0 |
⊢ Rel ∅ |
| 21 |
|
ndmfv |
⊢ ( ¬ 𝑋 ∈ dom 𝐼 → ( 𝐼 ‘ 𝑋 ) = ∅ ) |
| 22 |
21
|
releqd |
⊢ ( ¬ 𝑋 ∈ dom 𝐼 → ( Rel ( 𝐼 ‘ 𝑋 ) ↔ Rel ∅ ) ) |
| 23 |
20 22
|
mpbiri |
⊢ ( ¬ 𝑋 ∈ dom 𝐼 → Rel ( 𝐼 ‘ 𝑋 ) ) |
| 24 |
19 23
|
pm2.61d1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → Rel ( 𝐼 ‘ 𝑋 ) ) |