Metamath Proof Explorer


Theorem dihvalrel

Description: The value of isomorphism H is a relation. (Contributed by NM, 9-Mar-2014)

Ref Expression
Hypotheses dihvalrel.h
|- H = ( LHyp ` K )
dihvalrel.i
|- I = ( ( DIsoH ` K ) ` W )
Assertion dihvalrel
|- ( ( K e. HL /\ W e. H ) -> Rel ( I ` X ) )

Proof

Step Hyp Ref Expression
1 dihvalrel.h
 |-  H = ( LHyp ` K )
2 dihvalrel.i
 |-  I = ( ( DIsoH ` K ) ` W )
3 eqid
 |-  ( Base ` K ) = ( Base ` K )
4 3 1 2 dihdm
 |-  ( ( K e. HL /\ W e. H ) -> dom I = ( Base ` K ) )
5 4 eleq2d
 |-  ( ( K e. HL /\ W e. H ) -> ( X e. dom I <-> X e. ( Base ` K ) ) )
6 eqid
 |-  ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W )
7 eqid
 |-  ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) )
8 3 1 2 6 7 dihss
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. ( Base ` K ) ) -> ( I ` X ) C_ ( Base ` ( ( DVecH ` K ) ` W ) ) )
9 eqid
 |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W )
10 eqid
 |-  ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W )
11 1 9 10 6 7 dvhvbase
 |-  ( ( K e. HL /\ W e. H ) -> ( Base ` ( ( DVecH ` K ) ` W ) ) = ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) )
12 11 adantr
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. ( Base ` K ) ) -> ( Base ` ( ( DVecH ` K ) ` W ) ) = ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) )
13 8 12 sseqtrd
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. ( Base ` K ) ) -> ( I ` X ) C_ ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) )
14 xpss
 |-  ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) C_ ( _V X. _V )
15 13 14 sstrdi
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. ( Base ` K ) ) -> ( I ` X ) C_ ( _V X. _V ) )
16 df-rel
 |-  ( Rel ( I ` X ) <-> ( I ` X ) C_ ( _V X. _V ) )
17 15 16 sylibr
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. ( Base ` K ) ) -> Rel ( I ` X ) )
18 17 ex
 |-  ( ( K e. HL /\ W e. H ) -> ( X e. ( Base ` K ) -> Rel ( I ` X ) ) )
19 5 18 sylbid
 |-  ( ( K e. HL /\ W e. H ) -> ( X e. dom I -> Rel ( I ` X ) ) )
20 rel0
 |-  Rel (/)
21 ndmfv
 |-  ( -. X e. dom I -> ( I ` X ) = (/) )
22 21 releqd
 |-  ( -. X e. dom I -> ( Rel ( I ` X ) <-> Rel (/) ) )
23 20 22 mpbiri
 |-  ( -. X e. dom I -> Rel ( I ` X ) )
24 19 23 pm2.61d1
 |-  ( ( K e. HL /\ W e. H ) -> Rel ( I ` X ) )