Step |
Hyp |
Ref |
Expression |
1 |
|
dihvalrel.h |
|- H = ( LHyp ` K ) |
2 |
|
dihvalrel.i |
|- I = ( ( DIsoH ` K ) ` W ) |
3 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
4 |
3 1 2
|
dihdm |
|- ( ( K e. HL /\ W e. H ) -> dom I = ( Base ` K ) ) |
5 |
4
|
eleq2d |
|- ( ( K e. HL /\ W e. H ) -> ( X e. dom I <-> X e. ( Base ` K ) ) ) |
6 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
7 |
|
eqid |
|- ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) |
8 |
3 1 2 6 7
|
dihss |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ( Base ` K ) ) -> ( I ` X ) C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
9 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
10 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
11 |
1 9 10 6 7
|
dvhvbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` ( ( DVecH ` K ) ` W ) ) = ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
12 |
11
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ( Base ` K ) ) -> ( Base ` ( ( DVecH ` K ) ` W ) ) = ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
13 |
8 12
|
sseqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ( Base ` K ) ) -> ( I ` X ) C_ ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
14 |
|
xpss |
|- ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) C_ ( _V X. _V ) |
15 |
13 14
|
sstrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ( Base ` K ) ) -> ( I ` X ) C_ ( _V X. _V ) ) |
16 |
|
df-rel |
|- ( Rel ( I ` X ) <-> ( I ` X ) C_ ( _V X. _V ) ) |
17 |
15 16
|
sylibr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ( Base ` K ) ) -> Rel ( I ` X ) ) |
18 |
17
|
ex |
|- ( ( K e. HL /\ W e. H ) -> ( X e. ( Base ` K ) -> Rel ( I ` X ) ) ) |
19 |
5 18
|
sylbid |
|- ( ( K e. HL /\ W e. H ) -> ( X e. dom I -> Rel ( I ` X ) ) ) |
20 |
|
rel0 |
|- Rel (/) |
21 |
|
ndmfv |
|- ( -. X e. dom I -> ( I ` X ) = (/) ) |
22 |
21
|
releqd |
|- ( -. X e. dom I -> ( Rel ( I ` X ) <-> Rel (/) ) ) |
23 |
20 22
|
mpbiri |
|- ( -. X e. dom I -> Rel ( I ` X ) ) |
24 |
19 23
|
pm2.61d1 |
|- ( ( K e. HL /\ W e. H ) -> Rel ( I ` X ) ) |