| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihvalrel.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dihvalrel.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 3 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 4 |
3 1 2
|
dihdm |
|- ( ( K e. HL /\ W e. H ) -> dom I = ( Base ` K ) ) |
| 5 |
4
|
eleq2d |
|- ( ( K e. HL /\ W e. H ) -> ( X e. dom I <-> X e. ( Base ` K ) ) ) |
| 6 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
| 7 |
|
eqid |
|- ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) |
| 8 |
3 1 2 6 7
|
dihss |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ( Base ` K ) ) -> ( I ` X ) C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
| 9 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
| 10 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
| 11 |
1 9 10 6 7
|
dvhvbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` ( ( DVecH ` K ) ` W ) ) = ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
| 12 |
11
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ( Base ` K ) ) -> ( Base ` ( ( DVecH ` K ) ` W ) ) = ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
| 13 |
8 12
|
sseqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ( Base ` K ) ) -> ( I ` X ) C_ ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
| 14 |
|
xpss |
|- ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) C_ ( _V X. _V ) |
| 15 |
13 14
|
sstrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ( Base ` K ) ) -> ( I ` X ) C_ ( _V X. _V ) ) |
| 16 |
|
df-rel |
|- ( Rel ( I ` X ) <-> ( I ` X ) C_ ( _V X. _V ) ) |
| 17 |
15 16
|
sylibr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ( Base ` K ) ) -> Rel ( I ` X ) ) |
| 18 |
17
|
ex |
|- ( ( K e. HL /\ W e. H ) -> ( X e. ( Base ` K ) -> Rel ( I ` X ) ) ) |
| 19 |
5 18
|
sylbid |
|- ( ( K e. HL /\ W e. H ) -> ( X e. dom I -> Rel ( I ` X ) ) ) |
| 20 |
|
rel0 |
|- Rel (/) |
| 21 |
|
ndmfv |
|- ( -. X e. dom I -> ( I ` X ) = (/) ) |
| 22 |
21
|
releqd |
|- ( -. X e. dom I -> ( Rel ( I ` X ) <-> Rel (/) ) ) |
| 23 |
20 22
|
mpbiri |
|- ( -. X e. dom I -> Rel ( I ` X ) ) |
| 24 |
19 23
|
pm2.61d1 |
|- ( ( K e. HL /\ W e. H ) -> Rel ( I ` X ) ) |