Step |
Hyp |
Ref |
Expression |
1 |
|
dih0sb.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dih0sb.o |
⊢ 0 = ( 0. ‘ 𝐾 ) |
3 |
|
dih0sb.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dih0sb.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dih0sb.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
6 |
|
dih0sb.z |
⊢ 𝑍 = ( 0g ‘ 𝑈 ) |
7 |
|
dih0sb.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
8 |
|
dih0sb.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
dih0sb.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝐼 ) |
10 |
1 3 4 6
|
dih0rn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → { 𝑍 } ∈ ran 𝐼 ) |
11 |
8 10
|
syl |
⊢ ( 𝜑 → { 𝑍 } ∈ ran 𝐼 ) |
12 |
1 3 8 9 11
|
dihcnv11 |
⊢ ( 𝜑 → ( ( ◡ 𝐼 ‘ 𝑋 ) = ( ◡ 𝐼 ‘ { 𝑍 } ) ↔ 𝑋 = { 𝑍 } ) ) |
13 |
1 2 3 4 6
|
dih0cnv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ◡ 𝐼 ‘ { 𝑍 } ) = 0 ) |
14 |
8 13
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ { 𝑍 } ) = 0 ) |
15 |
14
|
eqeq2d |
⊢ ( 𝜑 → ( ( ◡ 𝐼 ‘ 𝑋 ) = ( ◡ 𝐼 ‘ { 𝑍 } ) ↔ ( ◡ 𝐼 ‘ 𝑋 ) = 0 ) ) |
16 |
12 15
|
bitr3d |
⊢ ( 𝜑 → ( 𝑋 = { 𝑍 } ↔ ( ◡ 𝐼 ‘ 𝑋 ) = 0 ) ) |