Step |
Hyp |
Ref |
Expression |
1 |
|
dih0cnv.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dih0cnv.o |
⊢ 0 = ( 0. ‘ 𝐾 ) |
3 |
|
dih0cnv.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dih0cnv.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dih0cnv.z |
⊢ 𝑍 = ( 0g ‘ 𝑈 ) |
6 |
2 1 3 4 5
|
dih0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 ‘ 0 ) = { 𝑍 } ) |
7 |
6
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ◡ 𝐼 ‘ ( 𝐼 ‘ 0 ) ) = ( ◡ 𝐼 ‘ { 𝑍 } ) ) |
8 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
9 |
8
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐾 ∈ AtLat ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
11 |
10 2
|
atl0cl |
⊢ ( 𝐾 ∈ AtLat → 0 ∈ ( Base ‘ 𝐾 ) ) |
12 |
9 11
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 0 ∈ ( Base ‘ 𝐾 ) ) |
13 |
10 1 3
|
dihcnvid1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 0 ∈ ( Base ‘ 𝐾 ) ) → ( ◡ 𝐼 ‘ ( 𝐼 ‘ 0 ) ) = 0 ) |
14 |
12 13
|
mpdan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ◡ 𝐼 ‘ ( 𝐼 ‘ 0 ) ) = 0 ) |
15 |
7 14
|
eqtr3d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ◡ 𝐼 ‘ { 𝑍 } ) = 0 ) |