Metamath Proof Explorer


Theorem dih0cnv

Description: The isomorphism H converse value of the zero subspace is the lattice zero. (Contributed by NM, 19-Jun-2014)

Ref Expression
Hypotheses dih0cnv.h H = LHyp K
dih0cnv.o 0 ˙ = 0. K
dih0cnv.i I = DIsoH K W
dih0cnv.u U = DVecH K W
dih0cnv.z Z = 0 U
Assertion dih0cnv K HL W H I -1 Z = 0 ˙

Proof

Step Hyp Ref Expression
1 dih0cnv.h H = LHyp K
2 dih0cnv.o 0 ˙ = 0. K
3 dih0cnv.i I = DIsoH K W
4 dih0cnv.u U = DVecH K W
5 dih0cnv.z Z = 0 U
6 2 1 3 4 5 dih0 K HL W H I 0 ˙ = Z
7 6 fveq2d K HL W H I -1 I 0 ˙ = I -1 Z
8 hlatl K HL K AtLat
9 8 adantr K HL W H K AtLat
10 eqid Base K = Base K
11 10 2 atl0cl K AtLat 0 ˙ Base K
12 9 11 syl K HL W H 0 ˙ Base K
13 10 1 3 dihcnvid1 K HL W H 0 ˙ Base K I -1 I 0 ˙ = 0 ˙
14 12 13 mpdan K HL W H I -1 I 0 ˙ = 0 ˙
15 7 14 eqtr3d K HL W H I -1 Z = 0 ˙