Metamath Proof Explorer


Theorem atl0cl

Description: An atomic lattice has a zero element. We can use this in place of op0cl for lattices without orthocomplements. (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses atl0cl.b B=BaseK
atl0cl.z 0˙=0.K
Assertion atl0cl KAtLat0˙B

Proof

Step Hyp Ref Expression
1 atl0cl.b B=BaseK
2 atl0cl.z 0˙=0.K
3 eqid glbK=glbK
4 1 3 2 p0val KAtLat0˙=glbKB
5 id KAtLatKAtLat
6 eqid lubK=lubK
7 1 6 3 atl0dm KAtLatBdomglbK
8 1 3 5 7 glbcl KAtLatglbKBB
9 4 8 eqeltrd KAtLat0˙B