Metamath Proof Explorer


Theorem p0val

Description: Value of poset zero. (Contributed by NM, 12-Oct-2011)

Ref Expression
Hypotheses p0val.b B=BaseK
p0val.g G=glbK
p0val.z 0˙=0.K
Assertion p0val KV0˙=GB

Proof

Step Hyp Ref Expression
1 p0val.b B=BaseK
2 p0val.g G=glbK
3 p0val.z 0˙=0.K
4 elex KVKV
5 fveq2 p=Kglbp=glbK
6 5 2 eqtr4di p=Kglbp=G
7 fveq2 p=KBasep=BaseK
8 7 1 eqtr4di p=KBasep=B
9 6 8 fveq12d p=KglbpBasep=GB
10 df-p0 0.=pVglbpBasep
11 fvex GBV
12 9 10 11 fvmpt KV0.K=GB
13 3 12 eqtrid KV0˙=GB
14 4 13 syl KV0˙=GB