Metamath Proof Explorer


Definition df-p0

Description: Define poset zero. (Contributed by NM, 12-Oct-2011)

Ref Expression
Assertion df-p0 0.=pVglbpBasep

Detailed syntax breakdown

Step Hyp Ref Expression
0 cp0 class0.
1 vp setvarp
2 cvv classV
3 cglb classglb
4 1 cv setvarp
5 4 3 cfv classglbp
6 cbs classBase
7 4 6 cfv classBasep
8 7 5 cfv classglbpBasep
9 1 2 8 cmpt classpVglbpBasep
10 0 9 wceq wff0.=pVglbpBasep