Metamath Proof Explorer


Theorem dih0rn

Description: The zero subspace belongs to the range of isomorphism H. (Contributed by NM, 27-Apr-2014)

Ref Expression
Hypotheses dih0rn.h H = LHyp K
dih0rn.i I = DIsoH K W
dih0rn.u U = DVecH K W
dih0rn.o 0 ˙ = 0 U
Assertion dih0rn K HL W H 0 ˙ ran I

Proof

Step Hyp Ref Expression
1 dih0rn.h H = LHyp K
2 dih0rn.i I = DIsoH K W
3 dih0rn.u U = DVecH K W
4 dih0rn.o 0 ˙ = 0 U
5 eqid 0. K = 0. K
6 5 1 2 3 4 dih0 K HL W H I 0. K = 0 ˙
7 eqid Base K = Base K
8 7 1 2 dihfn K HL W H I Fn Base K
9 hlop K HL K OP
10 9 adantr K HL W H K OP
11 7 5 op0cl K OP 0. K Base K
12 10 11 syl K HL W H 0. K Base K
13 fnfvelrn I Fn Base K 0. K Base K I 0. K ran I
14 8 12 13 syl2anc K HL W H I 0. K ran I
15 6 14 eqeltrrd K HL W H 0 ˙ ran I