| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dih0cnv.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dih0cnv.o |
|- .0. = ( 0. ` K ) |
| 3 |
|
dih0cnv.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 4 |
|
dih0cnv.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 5 |
|
dih0cnv.z |
|- Z = ( 0g ` U ) |
| 6 |
2 1 3 4 5
|
dih0 |
|- ( ( K e. HL /\ W e. H ) -> ( I ` .0. ) = { Z } ) |
| 7 |
6
|
fveq2d |
|- ( ( K e. HL /\ W e. H ) -> ( `' I ` ( I ` .0. ) ) = ( `' I ` { Z } ) ) |
| 8 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
| 9 |
8
|
adantr |
|- ( ( K e. HL /\ W e. H ) -> K e. AtLat ) |
| 10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 11 |
10 2
|
atl0cl |
|- ( K e. AtLat -> .0. e. ( Base ` K ) ) |
| 12 |
9 11
|
syl |
|- ( ( K e. HL /\ W e. H ) -> .0. e. ( Base ` K ) ) |
| 13 |
10 1 3
|
dihcnvid1 |
|- ( ( ( K e. HL /\ W e. H ) /\ .0. e. ( Base ` K ) ) -> ( `' I ` ( I ` .0. ) ) = .0. ) |
| 14 |
12 13
|
mpdan |
|- ( ( K e. HL /\ W e. H ) -> ( `' I ` ( I ` .0. ) ) = .0. ) |
| 15 |
7 14
|
eqtr3d |
|- ( ( K e. HL /\ W e. H ) -> ( `' I ` { Z } ) = .0. ) |