Step |
Hyp |
Ref |
Expression |
1 |
|
dihglb.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihglb.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
3 |
|
dihglb.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dihglb.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dihglb2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
dihglb2.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
7 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } ⊆ 𝐵 |
9 |
8
|
a1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) → { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } ⊆ 𝐵 ) |
10 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) → 𝐾 ∈ OP ) |
12 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
13 |
1 12
|
op1cl |
⊢ ( 𝐾 ∈ OP → ( 1. ‘ 𝐾 ) ∈ 𝐵 ) |
14 |
11 13
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) → ( 1. ‘ 𝐾 ) ∈ 𝐵 ) |
15 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ 𝑉 ) |
16 |
12 3 4 5 6
|
dih1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 ‘ ( 1. ‘ 𝐾 ) ) = 𝑉 ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐼 ‘ ( 1. ‘ 𝐾 ) ) = 𝑉 ) |
18 |
15 17
|
sseqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( 𝐼 ‘ ( 1. ‘ 𝐾 ) ) ) |
19 |
|
fveq2 |
⊢ ( 𝑥 = ( 1. ‘ 𝐾 ) → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ ( 1. ‘ 𝐾 ) ) ) |
20 |
19
|
sseq2d |
⊢ ( 𝑥 = ( 1. ‘ 𝐾 ) → ( 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) ↔ 𝑆 ⊆ ( 𝐼 ‘ ( 1. ‘ 𝐾 ) ) ) ) |
21 |
20
|
elrab |
⊢ ( ( 1. ‘ 𝐾 ) ∈ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } ↔ ( ( 1. ‘ 𝐾 ) ∈ 𝐵 ∧ 𝑆 ⊆ ( 𝐼 ‘ ( 1. ‘ 𝐾 ) ) ) ) |
22 |
14 18 21
|
sylanbrc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) → ( 1. ‘ 𝐾 ) ∈ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } ) |
23 |
22
|
ne0d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) → { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } ≠ ∅ ) |
24 |
1 2 3 4
|
dihglb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } ⊆ 𝐵 ∧ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } ≠ ∅ ) ) → ( 𝐼 ‘ ( 𝐺 ‘ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } ) ) = ∩ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } ( 𝐼 ‘ 𝑧 ) ) |
25 |
7 9 23 24
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐼 ‘ ( 𝐺 ‘ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } ) ) = ∩ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } ( 𝐼 ‘ 𝑧 ) ) |
26 |
|
fvex |
⊢ ( 𝐼 ‘ 𝑧 ) ∈ V |
27 |
26
|
dfiin2 |
⊢ ∩ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } ( 𝐼 ‘ 𝑧 ) = ∩ { 𝑦 ∣ ∃ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } 𝑦 = ( 𝐼 ‘ 𝑧 ) } |
28 |
1 3 4
|
dihfn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 Fn 𝐵 ) |
29 |
28
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑆 ⊆ 𝑦 ) → 𝐼 Fn 𝐵 ) |
30 |
|
fvelrnb |
⊢ ( 𝐼 Fn 𝐵 → ( 𝑦 ∈ ran 𝐼 ↔ ∃ 𝑧 ∈ 𝐵 ( 𝐼 ‘ 𝑧 ) = 𝑦 ) ) |
31 |
29 30
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑆 ⊆ 𝑦 ) → ( 𝑦 ∈ ran 𝐼 ↔ ∃ 𝑧 ∈ 𝐵 ( 𝐼 ‘ 𝑧 ) = 𝑦 ) ) |
32 |
|
eqcom |
⊢ ( ( 𝐼 ‘ 𝑧 ) = 𝑦 ↔ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) |
33 |
32
|
rexbii |
⊢ ( ∃ 𝑧 ∈ 𝐵 ( 𝐼 ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑧 ∈ 𝐵 𝑦 = ( 𝐼 ‘ 𝑧 ) ) |
34 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝐵 𝑦 = ( 𝐼 ‘ 𝑧 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) ) |
35 |
33 34
|
bitri |
⊢ ( ∃ 𝑧 ∈ 𝐵 ( 𝐼 ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) ) |
36 |
31 35
|
bitrdi |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑆 ⊆ 𝑦 ) → ( 𝑦 ∈ ran 𝐼 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) ) ) |
37 |
36
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑆 ⊆ 𝑦 → ( 𝑦 ∈ ran 𝐼 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) ) ) ) |
38 |
37
|
pm5.32rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) → ( ( 𝑦 ∈ ran 𝐼 ∧ 𝑆 ⊆ 𝑦 ) ↔ ( ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) ∧ 𝑆 ⊆ 𝑦 ) ) ) |
39 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } 𝑦 = ( 𝐼 ‘ 𝑧 ) ↔ ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } ∧ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) ) |
40 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑧 ) ) |
41 |
40
|
sseq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) ↔ 𝑆 ⊆ ( 𝐼 ‘ 𝑧 ) ) ) |
42 |
41
|
elrab |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ ( 𝐼 ‘ 𝑧 ) ) ) |
43 |
42
|
anbi1i |
⊢ ( ( 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } ∧ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) ↔ ( ( 𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ ( 𝐼 ‘ 𝑧 ) ) ∧ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) ) |
44 |
|
sseq2 |
⊢ ( 𝑦 = ( 𝐼 ‘ 𝑧 ) → ( 𝑆 ⊆ 𝑦 ↔ 𝑆 ⊆ ( 𝐼 ‘ 𝑧 ) ) ) |
45 |
44
|
anbi2d |
⊢ ( 𝑦 = ( 𝐼 ‘ 𝑧 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ 𝑦 ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ ( 𝐼 ‘ 𝑧 ) ) ) ) |
46 |
45
|
pm5.32ri |
⊢ ( ( ( 𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ 𝑦 ) ∧ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) ↔ ( ( 𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ ( 𝐼 ‘ 𝑧 ) ) ∧ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) ) |
47 |
|
an32 |
⊢ ( ( ( 𝑧 ∈ 𝐵 ∧ 𝑆 ⊆ 𝑦 ) ∧ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) ↔ ( ( 𝑧 ∈ 𝐵 ∧ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) ∧ 𝑆 ⊆ 𝑦 ) ) |
48 |
43 46 47
|
3bitr2i |
⊢ ( ( 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } ∧ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) ↔ ( ( 𝑧 ∈ 𝐵 ∧ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) ∧ 𝑆 ⊆ 𝑦 ) ) |
49 |
48
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } ∧ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) ↔ ∃ 𝑧 ( ( 𝑧 ∈ 𝐵 ∧ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) ∧ 𝑆 ⊆ 𝑦 ) ) |
50 |
|
19.41v |
⊢ ( ∃ 𝑧 ( ( 𝑧 ∈ 𝐵 ∧ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) ∧ 𝑆 ⊆ 𝑦 ) ↔ ( ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) ∧ 𝑆 ⊆ 𝑦 ) ) |
51 |
39 49 50
|
3bitrri |
⊢ ( ( ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ 𝑦 = ( 𝐼 ‘ 𝑧 ) ) ∧ 𝑆 ⊆ 𝑦 ) ↔ ∃ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } 𝑦 = ( 𝐼 ‘ 𝑧 ) ) |
52 |
38 51
|
bitr2di |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) → ( ∃ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } 𝑦 = ( 𝐼 ‘ 𝑧 ) ↔ ( 𝑦 ∈ ran 𝐼 ∧ 𝑆 ⊆ 𝑦 ) ) ) |
53 |
52
|
abbidv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) → { 𝑦 ∣ ∃ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } 𝑦 = ( 𝐼 ‘ 𝑧 ) } = { 𝑦 ∣ ( 𝑦 ∈ ran 𝐼 ∧ 𝑆 ⊆ 𝑦 ) } ) |
54 |
|
df-rab |
⊢ { 𝑦 ∈ ran 𝐼 ∣ 𝑆 ⊆ 𝑦 } = { 𝑦 ∣ ( 𝑦 ∈ ran 𝐼 ∧ 𝑆 ⊆ 𝑦 ) } |
55 |
53 54
|
eqtr4di |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) → { 𝑦 ∣ ∃ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } 𝑦 = ( 𝐼 ‘ 𝑧 ) } = { 𝑦 ∈ ran 𝐼 ∣ 𝑆 ⊆ 𝑦 } ) |
56 |
55
|
inteqd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) → ∩ { 𝑦 ∣ ∃ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } 𝑦 = ( 𝐼 ‘ 𝑧 ) } = ∩ { 𝑦 ∈ ran 𝐼 ∣ 𝑆 ⊆ 𝑦 } ) |
57 |
27 56
|
syl5eq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) → ∩ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } ( 𝐼 ‘ 𝑧 ) = ∩ { 𝑦 ∈ ran 𝐼 ∣ 𝑆 ⊆ 𝑦 } ) |
58 |
25 57
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐼 ‘ ( 𝐺 ‘ { 𝑥 ∈ 𝐵 ∣ 𝑆 ⊆ ( 𝐼 ‘ 𝑥 ) } ) ) = ∩ { 𝑦 ∈ ran 𝐼 ∣ 𝑆 ⊆ 𝑦 } ) |