Metamath Proof Explorer


Theorem dihglb2

Description: Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014)

Ref Expression
Hypotheses dihglb.b 𝐵 = ( Base ‘ 𝐾 )
dihglb.g 𝐺 = ( glb ‘ 𝐾 )
dihglb.h 𝐻 = ( LHyp ‘ 𝐾 )
dihglb.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihglb2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihglb2.v 𝑉 = ( Base ‘ 𝑈 )
Assertion dihglb2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) → ( 𝐼 ‘ ( 𝐺 ‘ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } ) ) = { 𝑦 ∈ ran 𝐼𝑆𝑦 } )

Proof

Step Hyp Ref Expression
1 dihglb.b 𝐵 = ( Base ‘ 𝐾 )
2 dihglb.g 𝐺 = ( glb ‘ 𝐾 )
3 dihglb.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dihglb.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
5 dihglb2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
6 dihglb2.v 𝑉 = ( Base ‘ 𝑈 )
7 simpl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 ssrab2 { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } ⊆ 𝐵
9 8 a1i ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) → { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } ⊆ 𝐵 )
10 hlop ( 𝐾 ∈ HL → 𝐾 ∈ OP )
11 10 ad2antrr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) → 𝐾 ∈ OP )
12 eqid ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 )
13 1 12 op1cl ( 𝐾 ∈ OP → ( 1. ‘ 𝐾 ) ∈ 𝐵 )
14 11 13 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) → ( 1. ‘ 𝐾 ) ∈ 𝐵 )
15 simpr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) → 𝑆𝑉 )
16 12 3 4 5 6 dih1 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝐼 ‘ ( 1. ‘ 𝐾 ) ) = 𝑉 )
17 16 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) → ( 𝐼 ‘ ( 1. ‘ 𝐾 ) ) = 𝑉 )
18 15 17 sseqtrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) → 𝑆 ⊆ ( 𝐼 ‘ ( 1. ‘ 𝐾 ) ) )
19 fveq2 ( 𝑥 = ( 1. ‘ 𝐾 ) → ( 𝐼𝑥 ) = ( 𝐼 ‘ ( 1. ‘ 𝐾 ) ) )
20 19 sseq2d ( 𝑥 = ( 1. ‘ 𝐾 ) → ( 𝑆 ⊆ ( 𝐼𝑥 ) ↔ 𝑆 ⊆ ( 𝐼 ‘ ( 1. ‘ 𝐾 ) ) ) )
21 20 elrab ( ( 1. ‘ 𝐾 ) ∈ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } ↔ ( ( 1. ‘ 𝐾 ) ∈ 𝐵𝑆 ⊆ ( 𝐼 ‘ ( 1. ‘ 𝐾 ) ) ) )
22 14 18 21 sylanbrc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) → ( 1. ‘ 𝐾 ) ∈ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } )
23 22 ne0d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) → { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } ≠ ∅ )
24 1 2 3 4 dihglb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } ⊆ 𝐵 ∧ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } ≠ ∅ ) ) → ( 𝐼 ‘ ( 𝐺 ‘ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } ) ) = 𝑧 ∈ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } ( 𝐼𝑧 ) )
25 7 9 23 24 syl12anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) → ( 𝐼 ‘ ( 𝐺 ‘ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } ) ) = 𝑧 ∈ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } ( 𝐼𝑧 ) )
26 fvex ( 𝐼𝑧 ) ∈ V
27 26 dfiin2 𝑧 ∈ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } ( 𝐼𝑧 ) = { 𝑦 ∣ ∃ 𝑧 ∈ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } 𝑦 = ( 𝐼𝑧 ) }
28 1 3 4 dihfn ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐼 Fn 𝐵 )
29 28 ad2antrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) ∧ 𝑆𝑦 ) → 𝐼 Fn 𝐵 )
30 fvelrnb ( 𝐼 Fn 𝐵 → ( 𝑦 ∈ ran 𝐼 ↔ ∃ 𝑧𝐵 ( 𝐼𝑧 ) = 𝑦 ) )
31 29 30 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) ∧ 𝑆𝑦 ) → ( 𝑦 ∈ ran 𝐼 ↔ ∃ 𝑧𝐵 ( 𝐼𝑧 ) = 𝑦 ) )
32 eqcom ( ( 𝐼𝑧 ) = 𝑦𝑦 = ( 𝐼𝑧 ) )
33 32 rexbii ( ∃ 𝑧𝐵 ( 𝐼𝑧 ) = 𝑦 ↔ ∃ 𝑧𝐵 𝑦 = ( 𝐼𝑧 ) )
34 df-rex ( ∃ 𝑧𝐵 𝑦 = ( 𝐼𝑧 ) ↔ ∃ 𝑧 ( 𝑧𝐵𝑦 = ( 𝐼𝑧 ) ) )
35 33 34 bitri ( ∃ 𝑧𝐵 ( 𝐼𝑧 ) = 𝑦 ↔ ∃ 𝑧 ( 𝑧𝐵𝑦 = ( 𝐼𝑧 ) ) )
36 31 35 bitrdi ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) ∧ 𝑆𝑦 ) → ( 𝑦 ∈ ran 𝐼 ↔ ∃ 𝑧 ( 𝑧𝐵𝑦 = ( 𝐼𝑧 ) ) ) )
37 36 ex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) → ( 𝑆𝑦 → ( 𝑦 ∈ ran 𝐼 ↔ ∃ 𝑧 ( 𝑧𝐵𝑦 = ( 𝐼𝑧 ) ) ) ) )
38 37 pm5.32rd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) → ( ( 𝑦 ∈ ran 𝐼𝑆𝑦 ) ↔ ( ∃ 𝑧 ( 𝑧𝐵𝑦 = ( 𝐼𝑧 ) ) ∧ 𝑆𝑦 ) ) )
39 df-rex ( ∃ 𝑧 ∈ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } 𝑦 = ( 𝐼𝑧 ) ↔ ∃ 𝑧 ( 𝑧 ∈ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } ∧ 𝑦 = ( 𝐼𝑧 ) ) )
40 fveq2 ( 𝑥 = 𝑧 → ( 𝐼𝑥 ) = ( 𝐼𝑧 ) )
41 40 sseq2d ( 𝑥 = 𝑧 → ( 𝑆 ⊆ ( 𝐼𝑥 ) ↔ 𝑆 ⊆ ( 𝐼𝑧 ) ) )
42 41 elrab ( 𝑧 ∈ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } ↔ ( 𝑧𝐵𝑆 ⊆ ( 𝐼𝑧 ) ) )
43 42 anbi1i ( ( 𝑧 ∈ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } ∧ 𝑦 = ( 𝐼𝑧 ) ) ↔ ( ( 𝑧𝐵𝑆 ⊆ ( 𝐼𝑧 ) ) ∧ 𝑦 = ( 𝐼𝑧 ) ) )
44 sseq2 ( 𝑦 = ( 𝐼𝑧 ) → ( 𝑆𝑦𝑆 ⊆ ( 𝐼𝑧 ) ) )
45 44 anbi2d ( 𝑦 = ( 𝐼𝑧 ) → ( ( 𝑧𝐵𝑆𝑦 ) ↔ ( 𝑧𝐵𝑆 ⊆ ( 𝐼𝑧 ) ) ) )
46 45 pm5.32ri ( ( ( 𝑧𝐵𝑆𝑦 ) ∧ 𝑦 = ( 𝐼𝑧 ) ) ↔ ( ( 𝑧𝐵𝑆 ⊆ ( 𝐼𝑧 ) ) ∧ 𝑦 = ( 𝐼𝑧 ) ) )
47 an32 ( ( ( 𝑧𝐵𝑆𝑦 ) ∧ 𝑦 = ( 𝐼𝑧 ) ) ↔ ( ( 𝑧𝐵𝑦 = ( 𝐼𝑧 ) ) ∧ 𝑆𝑦 ) )
48 43 46 47 3bitr2i ( ( 𝑧 ∈ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } ∧ 𝑦 = ( 𝐼𝑧 ) ) ↔ ( ( 𝑧𝐵𝑦 = ( 𝐼𝑧 ) ) ∧ 𝑆𝑦 ) )
49 48 exbii ( ∃ 𝑧 ( 𝑧 ∈ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } ∧ 𝑦 = ( 𝐼𝑧 ) ) ↔ ∃ 𝑧 ( ( 𝑧𝐵𝑦 = ( 𝐼𝑧 ) ) ∧ 𝑆𝑦 ) )
50 19.41v ( ∃ 𝑧 ( ( 𝑧𝐵𝑦 = ( 𝐼𝑧 ) ) ∧ 𝑆𝑦 ) ↔ ( ∃ 𝑧 ( 𝑧𝐵𝑦 = ( 𝐼𝑧 ) ) ∧ 𝑆𝑦 ) )
51 39 49 50 3bitrri ( ( ∃ 𝑧 ( 𝑧𝐵𝑦 = ( 𝐼𝑧 ) ) ∧ 𝑆𝑦 ) ↔ ∃ 𝑧 ∈ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } 𝑦 = ( 𝐼𝑧 ) )
52 38 51 bitr2di ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) → ( ∃ 𝑧 ∈ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } 𝑦 = ( 𝐼𝑧 ) ↔ ( 𝑦 ∈ ran 𝐼𝑆𝑦 ) ) )
53 52 abbidv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) → { 𝑦 ∣ ∃ 𝑧 ∈ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } 𝑦 = ( 𝐼𝑧 ) } = { 𝑦 ∣ ( 𝑦 ∈ ran 𝐼𝑆𝑦 ) } )
54 df-rab { 𝑦 ∈ ran 𝐼𝑆𝑦 } = { 𝑦 ∣ ( 𝑦 ∈ ran 𝐼𝑆𝑦 ) }
55 53 54 eqtr4di ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) → { 𝑦 ∣ ∃ 𝑧 ∈ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } 𝑦 = ( 𝐼𝑧 ) } = { 𝑦 ∈ ran 𝐼𝑆𝑦 } )
56 55 inteqd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) → { 𝑦 ∣ ∃ 𝑧 ∈ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } 𝑦 = ( 𝐼𝑧 ) } = { 𝑦 ∈ ran 𝐼𝑆𝑦 } )
57 27 56 syl5eq ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) → 𝑧 ∈ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } ( 𝐼𝑧 ) = { 𝑦 ∈ ran 𝐼𝑆𝑦 } )
58 25 57 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝑉 ) → ( 𝐼 ‘ ( 𝐺 ‘ { 𝑥𝐵𝑆 ⊆ ( 𝐼𝑥 ) } ) ) = { 𝑦 ∈ ran 𝐼𝑆𝑦 } )