Metamath Proof Explorer


Theorem dihglb2

Description: Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014)

Ref Expression
Hypotheses dihglb.b B = Base K
dihglb.g G = glb K
dihglb.h H = LHyp K
dihglb.i I = DIsoH K W
dihglb2.u U = DVecH K W
dihglb2.v V = Base U
Assertion dihglb2 K HL W H S V I G x B | S I x = y ran I | S y

Proof

Step Hyp Ref Expression
1 dihglb.b B = Base K
2 dihglb.g G = glb K
3 dihglb.h H = LHyp K
4 dihglb.i I = DIsoH K W
5 dihglb2.u U = DVecH K W
6 dihglb2.v V = Base U
7 simpl K HL W H S V K HL W H
8 ssrab2 x B | S I x B
9 8 a1i K HL W H S V x B | S I x B
10 hlop K HL K OP
11 10 ad2antrr K HL W H S V K OP
12 eqid 1. K = 1. K
13 1 12 op1cl K OP 1. K B
14 11 13 syl K HL W H S V 1. K B
15 simpr K HL W H S V S V
16 12 3 4 5 6 dih1 K HL W H I 1. K = V
17 16 adantr K HL W H S V I 1. K = V
18 15 17 sseqtrrd K HL W H S V S I 1. K
19 fveq2 x = 1. K I x = I 1. K
20 19 sseq2d x = 1. K S I x S I 1. K
21 20 elrab 1. K x B | S I x 1. K B S I 1. K
22 14 18 21 sylanbrc K HL W H S V 1. K x B | S I x
23 22 ne0d K HL W H S V x B | S I x
24 1 2 3 4 dihglb K HL W H x B | S I x B x B | S I x I G x B | S I x = z x B | S I x I z
25 7 9 23 24 syl12anc K HL W H S V I G x B | S I x = z x B | S I x I z
26 fvex I z V
27 26 dfiin2 z x B | S I x I z = y | z x B | S I x y = I z
28 1 3 4 dihfn K HL W H I Fn B
29 28 ad2antrr K HL W H S V S y I Fn B
30 fvelrnb I Fn B y ran I z B I z = y
31 29 30 syl K HL W H S V S y y ran I z B I z = y
32 eqcom I z = y y = I z
33 32 rexbii z B I z = y z B y = I z
34 df-rex z B y = I z z z B y = I z
35 33 34 bitri z B I z = y z z B y = I z
36 31 35 bitrdi K HL W H S V S y y ran I z z B y = I z
37 36 ex K HL W H S V S y y ran I z z B y = I z
38 37 pm5.32rd K HL W H S V y ran I S y z z B y = I z S y
39 df-rex z x B | S I x y = I z z z x B | S I x y = I z
40 fveq2 x = z I x = I z
41 40 sseq2d x = z S I x S I z
42 41 elrab z x B | S I x z B S I z
43 42 anbi1i z x B | S I x y = I z z B S I z y = I z
44 sseq2 y = I z S y S I z
45 44 anbi2d y = I z z B S y z B S I z
46 45 pm5.32ri z B S y y = I z z B S I z y = I z
47 an32 z B S y y = I z z B y = I z S y
48 43 46 47 3bitr2i z x B | S I x y = I z z B y = I z S y
49 48 exbii z z x B | S I x y = I z z z B y = I z S y
50 19.41v z z B y = I z S y z z B y = I z S y
51 39 49 50 3bitrri z z B y = I z S y z x B | S I x y = I z
52 38 51 bitr2di K HL W H S V z x B | S I x y = I z y ran I S y
53 52 abbidv K HL W H S V y | z x B | S I x y = I z = y | y ran I S y
54 df-rab y ran I | S y = y | y ran I S y
55 53 54 eqtr4di K HL W H S V y | z x B | S I x y = I z = y ran I | S y
56 55 inteqd K HL W H S V y | z x B | S I x y = I z = y ran I | S y
57 27 56 syl5eq K HL W H S V z x B | S I x I z = y ran I | S y
58 25 57 eqtrd K HL W H S V I G x B | S I x = y ran I | S y