Metamath Proof Explorer


Theorem dihmeet

Description: Isomorphism H of a lattice meet. (Contributed by NM, 13-Apr-2014)

Ref Expression
Hypotheses dihmeet.b B=BaseK
dihmeet.m ˙=meetK
dihmeet.h H=LHypK
dihmeet.i I=DIsoHKW
Assertion dihmeet KHLWHXBYBIX˙Y=IXIY

Proof

Step Hyp Ref Expression
1 dihmeet.b B=BaseK
2 dihmeet.m ˙=meetK
3 dihmeet.h H=LHypK
4 dihmeet.i I=DIsoHKW
5 eqid glbK=glbK
6 simp1l KHLWHXBYBKHL
7 simp2 KHLWHXBYBXB
8 simp3 KHLWHXBYBYB
9 5 2 6 7 8 meetval KHLWHXBYBX˙Y=glbKXY
10 9 fveq2d KHLWHXBYBIX˙Y=IglbKXY
11 simp1 KHLWHXBYBKHLWH
12 prssi XBYBXYB
13 12 3adant1 KHLWHXBYBXYB
14 prnzg XBXY
15 14 3ad2ant2 KHLWHXBYBXY
16 1 5 3 4 dihglb KHLWHXYBXYIglbKXY=xXYIx
17 11 13 15 16 syl12anc KHLWHXBYBIglbKXY=xXYIx
18 fveq2 x=XIx=IX
19 fveq2 x=YIx=IY
20 18 19 iinxprg XBYBxXYIx=IXIY
21 20 3adant1 KHLWHXBYBxXYIx=IXIY
22 10 17 21 3eqtrd KHLWHXBYBIX˙Y=IXIY