Step |
Hyp |
Ref |
Expression |
1 |
|
dihintcl.h |
|
2 |
|
dihintcl.i |
|
3 |
|
eqid |
|
4 |
3 1 2
|
dihfn |
|
5 |
3 1 2
|
dihdm |
|
6 |
5
|
fneq2d |
|
7 |
4 6
|
mpbird |
|
8 |
7
|
adantr |
|
9 |
|
cnvimass |
|
10 |
|
fnssres |
|
11 |
8 9 10
|
sylancl |
|
12 |
|
fniinfv |
|
13 |
11 12
|
syl |
|
14 |
|
df-ima |
|
15 |
4
|
adantr |
|
16 |
|
dffn4 |
|
17 |
15 16
|
sylib |
|
18 |
|
simprl |
|
19 |
|
foimacnv |
|
20 |
17 18 19
|
syl2anc |
|
21 |
14 20
|
eqtr3id |
|
22 |
21
|
inteqd |
|
23 |
13 22
|
eqtrd |
|
24 |
|
simpl |
|
25 |
5
|
adantr |
|
26 |
9 25
|
sseqtrid |
|
27 |
|
simprr |
|
28 |
|
n0 |
|
29 |
27 28
|
sylib |
|
30 |
18
|
sselda |
|
31 |
25
|
fneq2d |
|
32 |
15 31
|
mpbird |
|
33 |
32
|
adantr |
|
34 |
|
fvelrnb |
|
35 |
33 34
|
syl |
|
36 |
30 35
|
mpbid |
|
37 |
|
fnfun |
|
38 |
15 37
|
syl |
|
39 |
|
fvimacnv |
|
40 |
38 39
|
sylan |
|
41 |
|
ne0i |
|
42 |
40 41
|
syl6bi |
|
43 |
42
|
ex |
|
44 |
|
eleq1 |
|
45 |
44
|
biimprd |
|
46 |
45
|
imim1d |
|
47 |
43 46
|
syl9 |
|
48 |
47
|
com24 |
|
49 |
48
|
imp |
|
50 |
49
|
rexlimdv |
|
51 |
36 50
|
mpd |
|
52 |
29 51
|
exlimddv |
|
53 |
|
eqid |
|
54 |
3 53 1 2
|
dihglb |
|
55 |
24 26 52 54
|
syl12anc |
|
56 |
|
fvres |
|
57 |
56
|
iineq2i |
|
58 |
55 57
|
eqtr4di |
|
59 |
|
hlclat |
|
60 |
59
|
ad2antrr |
|
61 |
3 53
|
clatglbcl |
|
62 |
60 26 61
|
syl2anc |
|
63 |
3 1 2
|
dihcl |
|
64 |
62 63
|
syldan |
|
65 |
58 64
|
eqeltrrd |
|
66 |
23 65
|
eqeltrrd |
|