Metamath Proof Explorer


Theorem foimacnv

Description: A reverse version of f1imacnv . (Contributed by Jeff Hankins, 16-Jul-2009)

Ref Expression
Assertion foimacnv F:AontoBCBFF-1C=C

Proof

Step Hyp Ref Expression
1 resima FF-1CF-1C=FF-1C
2 fofun F:AontoBFunF
3 2 adantr F:AontoBCBFunF
4 funcnvres2 FunFF-1C-1=FF-1C
5 3 4 syl F:AontoBCBF-1C-1=FF-1C
6 5 imaeq1d F:AontoBCBF-1C-1F-1C=FF-1CF-1C
7 resss F-1CF-1
8 cnvss F-1CF-1F-1C-1F-1-1
9 7 8 ax-mp F-1C-1F-1-1
10 cnvcnvss F-1-1F
11 9 10 sstri F-1C-1F
12 funss F-1C-1FFunFFunF-1C-1
13 11 2 12 mpsyl F:AontoBFunF-1C-1
14 13 adantr F:AontoBCBFunF-1C-1
15 df-ima F-1C=ranF-1C
16 df-rn ranF-1C=domF-1C-1
17 15 16 eqtr2i domF-1C-1=F-1C
18 df-fn F-1C-1FnF-1CFunF-1C-1domF-1C-1=F-1C
19 14 17 18 sylanblrc F:AontoBCBF-1C-1FnF-1C
20 dfdm4 domF-1C=ranF-1C-1
21 forn F:AontoBranF=B
22 21 sseq2d F:AontoBCranFCB
23 22 biimpar F:AontoBCBCranF
24 df-rn ranF=domF-1
25 23 24 sseqtrdi F:AontoBCBCdomF-1
26 ssdmres CdomF-1domF-1C=C
27 25 26 sylib F:AontoBCBdomF-1C=C
28 20 27 eqtr3id F:AontoBCBranF-1C-1=C
29 df-fo F-1C-1:F-1ContoCF-1C-1FnF-1CranF-1C-1=C
30 19 28 29 sylanbrc F:AontoBCBF-1C-1:F-1ContoC
31 foima F-1C-1:F-1ContoCF-1C-1F-1C=C
32 30 31 syl F:AontoBCBF-1C-1F-1C=C
33 6 32 eqtr3d F:AontoBCBFF-1CF-1C=C
34 1 33 eqtr3id F:AontoBCBFF-1C=C