Metamath Proof Explorer


Theorem f1imacnv

Description: Preimage of an image. (Contributed by NM, 30-Sep-2004)

Ref Expression
Assertion f1imacnv F:A1-1BCAF-1FC=C

Proof

Step Hyp Ref Expression
1 resima F-1FCFC=F-1FC
2 df-f1 F:A1-1BF:ABFunF-1
3 2 simprbi F:A1-1BFunF-1
4 3 adantr F:A1-1BCAFunF-1
5 funcnvres FunF-1FC-1=F-1FC
6 4 5 syl F:A1-1BCAFC-1=F-1FC
7 6 imaeq1d F:A1-1BCAFC-1FC=F-1FCFC
8 f1ores F:A1-1BCAFC:C1-1 ontoFC
9 f1ocnv FC:C1-1 ontoFCFC-1:FC1-1 ontoC
10 8 9 syl F:A1-1BCAFC-1:FC1-1 ontoC
11 imadmrn FC-1domFC-1=ranFC-1
12 f1odm FC-1:FC1-1 ontoCdomFC-1=FC
13 12 imaeq2d FC-1:FC1-1 ontoCFC-1domFC-1=FC-1FC
14 f1ofo FC-1:FC1-1 ontoCFC-1:FContoC
15 forn FC-1:FContoCranFC-1=C
16 14 15 syl FC-1:FC1-1 ontoCranFC-1=C
17 11 13 16 3eqtr3a FC-1:FC1-1 ontoCFC-1FC=C
18 10 17 syl F:A1-1BCAFC-1FC=C
19 7 18 eqtr3d F:A1-1BCAF-1FCFC=C
20 1 19 eqtr3id F:A1-1BCAF-1FC=C